Microstructure and improved plasticity of (FeCoNi1.5CrCu)p/Al composites subject to adjusted deep cryogenic treatment (DCT)

•The DCT promotes grain rotation and preferential orientation, inducing the transformation of the (111) and (200) crystal planes of the aluminum grains to the (220) crystal plane due to the released internal stress.•The preferential orientation increases the absorbed work (toughness), which macrosco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-02, Vol.895, p.162690, Article 162690
Hauptverfasser: Liu, J.Q., Wang, H.M., Li, G.R., Su, W.X., Zhang, Z.B., Zhou, Z.C., Dong, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 162690
container_title Journal of alloys and compounds
container_volume 895
creator Liu, J.Q.
Wang, H.M.
Li, G.R.
Su, W.X.
Zhang, Z.B.
Zhou, Z.C.
Dong, C.
description •The DCT promotes grain rotation and preferential orientation, inducing the transformation of the (111) and (200) crystal planes of the aluminum grains to the (220) crystal plane due to the released internal stress.•The preferential orientation increases the absorbed work (toughness), which macroscopically reflects the increase in plasticity.•The decrease in strength is due to the expansion of microcracks in HEAs particles. [Display omitted] This study aimed to reveal the effects of Deep Cryogenic Treatment (DCT) on the microstructure and mechanical properties of (FeCoNi1.5CrCu)p/Al composites. Precisely, the microwave sintering-prepared samples were soaked in liquid nitrogen to optimize the DCT parameter. The results demonstrated that the (111) and (200) crystal face indexes were induced by released internal stress during DCT to turn to (220). The preferential orientation plays a vital role in plasticity improvement. The compression experiments show that the plasticity of DCT 36 is greatly improved, reaching 142%, compared to the untreated sample. The macro performance shows that the cracks change from one-way to two-way propagation, and the fracture toughness of DCT 36 increased by 155.6% compared to untreated due to multi-system slip.
doi_str_mv 10.1016/j.jallcom.2021.162690
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623609663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821041001</els_id><sourcerecordid>2623609663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a17b1a0d05fb9b44edb0f698411bd5c6101c2ff1d043b27c911d2ff8452f87103</originalsourceid><addsrcrecordid>eNqFkM1q3DAUhUVJoJO0j1AQdJMs7OhKtmyvQnCbtpAmm3QtZOm6yHgsV5IDQ16-Gib7rC4Xzg_nI-QLsBIYyJupnPQ8G78vOeNQguSyYx_IDtpGFJWU3RnZsY7XRSva9iO5iHFijEEnYEdefzsTfExhM2kLSPViqduvwb-gpeusY3LGpQP1I726x94_OijrPvTb9XpzN9NcuvroEkYat2FCk2jyVNtpiykHWMSVmnDwf3FxhqaAOu1xSfTqW_98_Ymcj3qO-PntXpI_99-f-5_Fw9OPX_3dQ2GEaFKhoRlAM8vqceiGqkI7sFF2bQUw2NrIzMDwcQTLKjHwxnQANv9tVfOxbYCJS_L1lJtn_dswJjX5LSy5UnHJhWSdlCKr6pPqyCMGHNUa3F6HgwKmjpzVpN44qyNndeKcfbcnH-YJLw6DisbhYtC6kHko6907Cf8B_NeJdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623609663</pqid></control><display><type>article</type><title>Microstructure and improved plasticity of (FeCoNi1.5CrCu)p/Al composites subject to adjusted deep cryogenic treatment (DCT)</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, J.Q. ; Wang, H.M. ; Li, G.R. ; Su, W.X. ; Zhang, Z.B. ; Zhou, Z.C. ; Dong, C.</creator><creatorcontrib>Liu, J.Q. ; Wang, H.M. ; Li, G.R. ; Su, W.X. ; Zhang, Z.B. ; Zhou, Z.C. ; Dong, C.</creatorcontrib><description>•The DCT promotes grain rotation and preferential orientation, inducing the transformation of the (111) and (200) crystal planes of the aluminum grains to the (220) crystal plane due to the released internal stress.•The preferential orientation increases the absorbed work (toughness), which macroscopically reflects the increase in plasticity.•The decrease in strength is due to the expansion of microcracks in HEAs particles. [Display omitted] This study aimed to reveal the effects of Deep Cryogenic Treatment (DCT) on the microstructure and mechanical properties of (FeCoNi1.5CrCu)p/Al composites. Precisely, the microwave sintering-prepared samples were soaked in liquid nitrogen to optimize the DCT parameter. The results demonstrated that the (111) and (200) crystal face indexes were induced by released internal stress during DCT to turn to (220). The preferential orientation plays a vital role in plasticity improvement. The compression experiments show that the plasticity of DCT 36 is greatly improved, reaching 142%, compared to the untreated sample. The macro performance shows that the cracks change from one-way to two-way propagation, and the fracture toughness of DCT 36 increased by 155.6% compared to untreated due to multi-system slip.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.162690</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Composite materials ; Crack propagation ; Cryogenic engineering ; Cryogenic treatment ; Deep cryogenic treatment (DCT) ; Fracture toughness ; Liquid nitrogen ; Mechanical properties ; Metal-matrix composites (MMCs) ; Microstructure ; Microstructures ; Microwave sintering ; Performance indices ; Plastic properties ; Residual stress</subject><ispartof>Journal of alloys and compounds, 2022-02, Vol.895, p.162690, Article 162690</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 25, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-a17b1a0d05fb9b44edb0f698411bd5c6101c2ff1d043b27c911d2ff8452f87103</citedby><cites>FETCH-LOGICAL-c337t-a17b1a0d05fb9b44edb0f698411bd5c6101c2ff1d043b27c911d2ff8452f87103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838821041001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, J.Q.</creatorcontrib><creatorcontrib>Wang, H.M.</creatorcontrib><creatorcontrib>Li, G.R.</creatorcontrib><creatorcontrib>Su, W.X.</creatorcontrib><creatorcontrib>Zhang, Z.B.</creatorcontrib><creatorcontrib>Zhou, Z.C.</creatorcontrib><creatorcontrib>Dong, C.</creatorcontrib><title>Microstructure and improved plasticity of (FeCoNi1.5CrCu)p/Al composites subject to adjusted deep cryogenic treatment (DCT)</title><title>Journal of alloys and compounds</title><description>•The DCT promotes grain rotation and preferential orientation, inducing the transformation of the (111) and (200) crystal planes of the aluminum grains to the (220) crystal plane due to the released internal stress.•The preferential orientation increases the absorbed work (toughness), which macroscopically reflects the increase in plasticity.•The decrease in strength is due to the expansion of microcracks in HEAs particles. [Display omitted] This study aimed to reveal the effects of Deep Cryogenic Treatment (DCT) on the microstructure and mechanical properties of (FeCoNi1.5CrCu)p/Al composites. Precisely, the microwave sintering-prepared samples were soaked in liquid nitrogen to optimize the DCT parameter. The results demonstrated that the (111) and (200) crystal face indexes were induced by released internal stress during DCT to turn to (220). The preferential orientation plays a vital role in plasticity improvement. The compression experiments show that the plasticity of DCT 36 is greatly improved, reaching 142%, compared to the untreated sample. The macro performance shows that the cracks change from one-way to two-way propagation, and the fracture toughness of DCT 36 increased by 155.6% compared to untreated due to multi-system slip.</description><subject>Composite materials</subject><subject>Crack propagation</subject><subject>Cryogenic engineering</subject><subject>Cryogenic treatment</subject><subject>Deep cryogenic treatment (DCT)</subject><subject>Fracture toughness</subject><subject>Liquid nitrogen</subject><subject>Mechanical properties</subject><subject>Metal-matrix composites (MMCs)</subject><subject>Microstructure</subject><subject>Microstructures</subject><subject>Microwave sintering</subject><subject>Performance indices</subject><subject>Plastic properties</subject><subject>Residual stress</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAUhUVJoJO0j1AQdJMs7OhKtmyvQnCbtpAmm3QtZOm6yHgsV5IDQ16-Gib7rC4Xzg_nI-QLsBIYyJupnPQ8G78vOeNQguSyYx_IDtpGFJWU3RnZsY7XRSva9iO5iHFijEEnYEdefzsTfExhM2kLSPViqduvwb-gpeusY3LGpQP1I726x94_OijrPvTb9XpzN9NcuvroEkYat2FCk2jyVNtpiykHWMSVmnDwf3FxhqaAOu1xSfTqW_98_Ymcj3qO-PntXpI_99-f-5_Fw9OPX_3dQ2GEaFKhoRlAM8vqceiGqkI7sFF2bQUw2NrIzMDwcQTLKjHwxnQANv9tVfOxbYCJS_L1lJtn_dswJjX5LSy5UnHJhWSdlCKr6pPqyCMGHNUa3F6HgwKmjpzVpN44qyNndeKcfbcnH-YJLw6DisbhYtC6kHko6907Cf8B_NeJdQ</recordid><startdate>20220225</startdate><enddate>20220225</enddate><creator>Liu, J.Q.</creator><creator>Wang, H.M.</creator><creator>Li, G.R.</creator><creator>Su, W.X.</creator><creator>Zhang, Z.B.</creator><creator>Zhou, Z.C.</creator><creator>Dong, C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220225</creationdate><title>Microstructure and improved plasticity of (FeCoNi1.5CrCu)p/Al composites subject to adjusted deep cryogenic treatment (DCT)</title><author>Liu, J.Q. ; Wang, H.M. ; Li, G.R. ; Su, W.X. ; Zhang, Z.B. ; Zhou, Z.C. ; Dong, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a17b1a0d05fb9b44edb0f698411bd5c6101c2ff1d043b27c911d2ff8452f87103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Composite materials</topic><topic>Crack propagation</topic><topic>Cryogenic engineering</topic><topic>Cryogenic treatment</topic><topic>Deep cryogenic treatment (DCT)</topic><topic>Fracture toughness</topic><topic>Liquid nitrogen</topic><topic>Mechanical properties</topic><topic>Metal-matrix composites (MMCs)</topic><topic>Microstructure</topic><topic>Microstructures</topic><topic>Microwave sintering</topic><topic>Performance indices</topic><topic>Plastic properties</topic><topic>Residual stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, J.Q.</creatorcontrib><creatorcontrib>Wang, H.M.</creatorcontrib><creatorcontrib>Li, G.R.</creatorcontrib><creatorcontrib>Su, W.X.</creatorcontrib><creatorcontrib>Zhang, Z.B.</creatorcontrib><creatorcontrib>Zhou, Z.C.</creatorcontrib><creatorcontrib>Dong, C.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, J.Q.</au><au>Wang, H.M.</au><au>Li, G.R.</au><au>Su, W.X.</au><au>Zhang, Z.B.</au><au>Zhou, Z.C.</au><au>Dong, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and improved plasticity of (FeCoNi1.5CrCu)p/Al composites subject to adjusted deep cryogenic treatment (DCT)</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-02-25</date><risdate>2022</risdate><volume>895</volume><spage>162690</spage><pages>162690-</pages><artnum>162690</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•The DCT promotes grain rotation and preferential orientation, inducing the transformation of the (111) and (200) crystal planes of the aluminum grains to the (220) crystal plane due to the released internal stress.•The preferential orientation increases the absorbed work (toughness), which macroscopically reflects the increase in plasticity.•The decrease in strength is due to the expansion of microcracks in HEAs particles. [Display omitted] This study aimed to reveal the effects of Deep Cryogenic Treatment (DCT) on the microstructure and mechanical properties of (FeCoNi1.5CrCu)p/Al composites. Precisely, the microwave sintering-prepared samples were soaked in liquid nitrogen to optimize the DCT parameter. The results demonstrated that the (111) and (200) crystal face indexes were induced by released internal stress during DCT to turn to (220). The preferential orientation plays a vital role in plasticity improvement. The compression experiments show that the plasticity of DCT 36 is greatly improved, reaching 142%, compared to the untreated sample. The macro performance shows that the cracks change from one-way to two-way propagation, and the fracture toughness of DCT 36 increased by 155.6% compared to untreated due to multi-system slip.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.162690</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-02, Vol.895, p.162690, Article 162690
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2623609663
source Elsevier ScienceDirect Journals
subjects Composite materials
Crack propagation
Cryogenic engineering
Cryogenic treatment
Deep cryogenic treatment (DCT)
Fracture toughness
Liquid nitrogen
Mechanical properties
Metal-matrix composites (MMCs)
Microstructure
Microstructures
Microwave sintering
Performance indices
Plastic properties
Residual stress
title Microstructure and improved plasticity of (FeCoNi1.5CrCu)p/Al composites subject to adjusted deep cryogenic treatment (DCT)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20improved%20plasticity%20of%20(FeCoNi1.5CrCu)p/Al%20composites%20subject%20to%20adjusted%20deep%20cryogenic%20treatment%20(DCT)&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Liu,%20J.Q.&rft.date=2022-02-25&rft.volume=895&rft.spage=162690&rft.pages=162690-&rft.artnum=162690&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.162690&rft_dat=%3Cproquest_cross%3E2623609663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623609663&rft_id=info:pmid/&rft_els_id=S0925838821041001&rfr_iscdi=true