Research progress on performance enhancement of heat pipes: a review

Heat pipes are silent heat transfer devices that work on the motion of boiling and condensation process. They have been used in space crafts, heat recovery and ventilation, power conversion, energy, and electronics cooling applications. Over the past few eras, several necessary upgradations in heat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2022-02, Vol.147 (4), p.2847-2883
Hauptverfasser: Sudhan, A. L. Sriram, Ramachandran, K., Solomon, A. Brusly, Jawahar, C. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2883
container_issue 4
container_start_page 2847
container_title Journal of thermal analysis and calorimetry
container_volume 147
creator Sudhan, A. L. Sriram
Ramachandran, K.
Solomon, A. Brusly
Jawahar, C. P.
description Heat pipes are silent heat transfer devices that work on the motion of boiling and condensation process. They have been used in space crafts, heat recovery and ventilation, power conversion, energy, and electronics cooling applications. Over the past few eras, several necessary upgradations in heat pipe technologies have happened to implement new advanced fluids, design modification, and modified wick structures. Heat transfer enhancement due to these upgradations/implementations has been deliberated in many studies. In this paper, performance studies of heat pipes with deposition of nanoparticles and suitable coating made on the wick structure are reviewed. Various heat transfer mechanisms involved in heat pipes with nanoparticles deposition on the evaporator are summarized. Also, the various heat transfer mechanisms in heat pipes while using a nanofluid and a porous coating in the evaporator are summarized. This review shall offer a superior comprehension of the improvement required in cooling devices and help future research fraternity to develop advanced cooling gadgets.
doi_str_mv 10.1007/s10973-021-10732-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2623605064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691070222</galeid><sourcerecordid>A691070222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-2018e90c8863bcf01ec252fd7a3bb67d67af57b03ed328d422597026d68163f63</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsFb_gKeAJw9bJ5Nudtdb8bNQEKqeQzY7abe0u2uy9ePfm7qC9CI5zBCeJzPkjaJzDiMOkF55DnkqYkAec0gFxuIgGvAky2LMUR6GXoRe8gSOoxPvVwCQ58AH0e2cPGlnlqx1zcKR96ypWUvONm6ja0OM6uWubqjuWGPZknTH2qolf800c_Re0cdpdGT12tPZbx1Gr_d3LzeP8ezpYXozmcVG5NjFCDyjHEyWSVEYC5wMJmjLVIuikGkpU22TtABBpcCsHCMmeQooS5lxKawUw-iifzfs-rYl36lVs3V1GKlQopCQgBwHatRTC70mVdW26Zw24ZS0qUxTk63C_UTm4acAEYNwuScEpqPPbqG33qvp83yfxZ41rvHekVWtqzbafSkOaheF6qNQIQr1E4USQRK95ANcL8j97f2P9Q0Om4k5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623605064</pqid></control><display><type>article</type><title>Research progress on performance enhancement of heat pipes: a review</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sudhan, A. L. Sriram ; Ramachandran, K. ; Solomon, A. Brusly ; Jawahar, C. P.</creator><creatorcontrib>Sudhan, A. L. Sriram ; Ramachandran, K. ; Solomon, A. Brusly ; Jawahar, C. P.</creatorcontrib><description>Heat pipes are silent heat transfer devices that work on the motion of boiling and condensation process. They have been used in space crafts, heat recovery and ventilation, power conversion, energy, and electronics cooling applications. Over the past few eras, several necessary upgradations in heat pipe technologies have happened to implement new advanced fluids, design modification, and modified wick structures. Heat transfer enhancement due to these upgradations/implementations has been deliberated in many studies. In this paper, performance studies of heat pipes with deposition of nanoparticles and suitable coating made on the wick structure are reviewed. Various heat transfer mechanisms involved in heat pipes with nanoparticles deposition on the evaporator are summarized. Also, the various heat transfer mechanisms in heat pipes while using a nanofluid and a porous coating in the evaporator are summarized. This review shall offer a superior comprehension of the improvement required in cooling devices and help future research fraternity to develop advanced cooling gadgets.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-021-10732-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Coatings ; Cooling ; Deposition ; Design modifications ; Energy conversion ; Evaporators ; Heat pipes ; Heat recovery ; Heat transfer ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Nanofluids ; Nanoparticles ; Performance enhancement ; Physical Chemistry ; Polymer Sciences</subject><ispartof>Journal of thermal analysis and calorimetry, 2022-02, Vol.147 (4), p.2847-2883</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-2018e90c8863bcf01ec252fd7a3bb67d67af57b03ed328d422597026d68163f63</citedby><cites>FETCH-LOGICAL-c392t-2018e90c8863bcf01ec252fd7a3bb67d67af57b03ed328d422597026d68163f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-021-10732-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-021-10732-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sudhan, A. L. Sriram</creatorcontrib><creatorcontrib>Ramachandran, K.</creatorcontrib><creatorcontrib>Solomon, A. Brusly</creatorcontrib><creatorcontrib>Jawahar, C. P.</creatorcontrib><title>Research progress on performance enhancement of heat pipes: a review</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Heat pipes are silent heat transfer devices that work on the motion of boiling and condensation process. They have been used in space crafts, heat recovery and ventilation, power conversion, energy, and electronics cooling applications. Over the past few eras, several necessary upgradations in heat pipe technologies have happened to implement new advanced fluids, design modification, and modified wick structures. Heat transfer enhancement due to these upgradations/implementations has been deliberated in many studies. In this paper, performance studies of heat pipes with deposition of nanoparticles and suitable coating made on the wick structure are reviewed. Various heat transfer mechanisms involved in heat pipes with nanoparticles deposition on the evaporator are summarized. Also, the various heat transfer mechanisms in heat pipes while using a nanofluid and a porous coating in the evaporator are summarized. This review shall offer a superior comprehension of the improvement required in cooling devices and help future research fraternity to develop advanced cooling gadgets.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coatings</subject><subject>Cooling</subject><subject>Deposition</subject><subject>Design modifications</subject><subject>Energy conversion</subject><subject>Evaporators</subject><subject>Heat pipes</subject><subject>Heat recovery</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Performance enhancement</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsFb_gKeAJw9bJ5Nudtdb8bNQEKqeQzY7abe0u2uy9ePfm7qC9CI5zBCeJzPkjaJzDiMOkF55DnkqYkAec0gFxuIgGvAky2LMUR6GXoRe8gSOoxPvVwCQ58AH0e2cPGlnlqx1zcKR96ypWUvONm6ja0OM6uWubqjuWGPZknTH2qolf800c_Re0cdpdGT12tPZbx1Gr_d3LzeP8ezpYXozmcVG5NjFCDyjHEyWSVEYC5wMJmjLVIuikGkpU22TtABBpcCsHCMmeQooS5lxKawUw-iifzfs-rYl36lVs3V1GKlQopCQgBwHatRTC70mVdW26Zw24ZS0qUxTk63C_UTm4acAEYNwuScEpqPPbqG33qvp83yfxZ41rvHekVWtqzbafSkOaheF6qNQIQr1E4USQRK95ANcL8j97f2P9Q0Om4k5</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Sudhan, A. L. Sriram</creator><creator>Ramachandran, K.</creator><creator>Solomon, A. Brusly</creator><creator>Jawahar, C. P.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220201</creationdate><title>Research progress on performance enhancement of heat pipes: a review</title><author>Sudhan, A. L. Sriram ; Ramachandran, K. ; Solomon, A. Brusly ; Jawahar, C. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-2018e90c8863bcf01ec252fd7a3bb67d67af57b03ed328d422597026d68163f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coatings</topic><topic>Cooling</topic><topic>Deposition</topic><topic>Design modifications</topic><topic>Energy conversion</topic><topic>Evaporators</topic><topic>Heat pipes</topic><topic>Heat recovery</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Performance enhancement</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudhan, A. L. Sriram</creatorcontrib><creatorcontrib>Ramachandran, K.</creatorcontrib><creatorcontrib>Solomon, A. Brusly</creatorcontrib><creatorcontrib>Jawahar, C. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudhan, A. L. Sriram</au><au>Ramachandran, K.</au><au>Solomon, A. Brusly</au><au>Jawahar, C. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research progress on performance enhancement of heat pipes: a review</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>147</volume><issue>4</issue><spage>2847</spage><epage>2883</epage><pages>2847-2883</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Heat pipes are silent heat transfer devices that work on the motion of boiling and condensation process. They have been used in space crafts, heat recovery and ventilation, power conversion, energy, and electronics cooling applications. Over the past few eras, several necessary upgradations in heat pipe technologies have happened to implement new advanced fluids, design modification, and modified wick structures. Heat transfer enhancement due to these upgradations/implementations has been deliberated in many studies. In this paper, performance studies of heat pipes with deposition of nanoparticles and suitable coating made on the wick structure are reviewed. Various heat transfer mechanisms involved in heat pipes with nanoparticles deposition on the evaporator are summarized. Also, the various heat transfer mechanisms in heat pipes while using a nanofluid and a porous coating in the evaporator are summarized. This review shall offer a superior comprehension of the improvement required in cooling devices and help future research fraternity to develop advanced cooling gadgets.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-021-10732-3</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2022-02, Vol.147 (4), p.2847-2883
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2623605064
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Chemistry
Chemistry and Materials Science
Coatings
Cooling
Deposition
Design modifications
Energy conversion
Evaporators
Heat pipes
Heat recovery
Heat transfer
Inorganic Chemistry
Measurement Science and Instrumentation
Nanofluids
Nanoparticles
Performance enhancement
Physical Chemistry
Polymer Sciences
title Research progress on performance enhancement of heat pipes: a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20progress%20on%20performance%20enhancement%20of%20heat%20pipes:%20a%20review&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Sudhan,%20A.%20L.%20Sriram&rft.date=2022-02-01&rft.volume=147&rft.issue=4&rft.spage=2847&rft.epage=2883&rft.pages=2847-2883&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-021-10732-3&rft_dat=%3Cgale_proqu%3EA691070222%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623605064&rft_id=info:pmid/&rft_galeid=A691070222&rfr_iscdi=true