Experimental investigation of face mask filtration in the 15–150 μm range for stationary flows

The effectiveness of face masks for preventing airborne transmission has been debated heavily during the COVID-19 pandemic. This paper investigates the filtration efficiency for four different face mask materials, two professional and two homemade, for different airflow conditions using model experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-01, Vol.131 (4)
Hauptverfasser: Öhman, Johan, Gren, Per, Sjödahl, Mikael, Lundström, T. Staffan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of applied physics
container_volume 131
creator Öhman, Johan
Gren, Per
Sjödahl, Mikael
Lundström, T. Staffan
description The effectiveness of face masks for preventing airborne transmission has been debated heavily during the COVID-19 pandemic. This paper investigates the filtration efficiency for four different face mask materials, two professional and two homemade, for different airflow conditions using model experiments and artificially generated water droplets. The size range chosen represents particles with the largest volume that can be suspended in air. The particles are detected using double pulsed interferometric particle imaging, from which it is possible to estimate the positions, velocity, and size of individual particles. It is found that all the tested face masks are efficient in preventing particles from transmission through the mask material. In the presence of leakage, particles larger than approximately 100 μ m are completely removed from the air stream. The filtration efficiency decreases with the decreasing particle size to approximately 80 % for 15 μ m particles. The size dependency in the leakage is mainly due to the momentum of the larger particles. The results show that even simple face mask materials with leakage prevent a large portion of the emitted particles in the 15–150  μ m range.
doi_str_mv 10.1063/5.0077710
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2623482024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623482024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-eaf0e3fe7702b54011e95be58532431f314fc67e345688562ce540c93e1dd9d13</originalsourceid><addsrcrecordid>eNqdkD1OwzAUxy0EEqUwcANLTCClPNtxnIyo4kuqxAKz5Tp2SUnjYKcFtq7MXIczcIieBEMqsTM96emn_xdCxwRGBDJ2zkcAQggCO2hAIC8SwTnsogEAJUleiGIfHYQwByAkZ8UA6cvX1vhqYZpO1bhqViZ01Ux1lWuws9gqbfBChSdsq7rz_b9qcPdoMOGb9QfhsFm_f30usFfNzGDrPA7dL6f8G7a1ewmHaM-qOpij7R2ih6vL-_FNMrm7vh1fTBLNMtolRlkwzBohgE55GhOagk8NzzmjKSOWkdTqTBiW8izPeUa1iZQumCFlWZSEDdFJr9t697yMReTcLX0TLSXNKEtzClFoiE57SnsXgjdWtrF_DCsJyJ8NJZfbDSN71rNBV32p_8Er5_9A2ZaWfQNB4YFl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623482024</pqid></control><display><type>article</type><title>Experimental investigation of face mask filtration in the 15–150 μm range for stationary flows</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Öhman, Johan ; Gren, Per ; Sjödahl, Mikael ; Lundström, T. Staffan</creator><creatorcontrib>Öhman, Johan ; Gren, Per ; Sjödahl, Mikael ; Lundström, T. Staffan</creatorcontrib><description>The effectiveness of face masks for preventing airborne transmission has been debated heavily during the COVID-19 pandemic. This paper investigates the filtration efficiency for four different face mask materials, two professional and two homemade, for different airflow conditions using model experiments and artificially generated water droplets. The size range chosen represents particles with the largest volume that can be suspended in air. The particles are detected using double pulsed interferometric particle imaging, from which it is possible to estimate the positions, velocity, and size of individual particles. It is found that all the tested face masks are efficient in preventing particles from transmission through the mask material. In the presence of leakage, particles larger than approximately 100 μ m are completely removed from the air stream. The filtration efficiency decreases with the decreasing particle size to approximately 80 % for 15 μ m particles. The size dependency in the leakage is mainly due to the momentum of the larger particles. The results show that even simple face mask materials with leakage prevent a large portion of the emitted particles in the 15–150  μ m range.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0077710</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Air flow ; Applied physics ; COVID-19 ; Filtration ; Leakage ; Masks ; Water drops</subject><ispartof>Journal of applied physics, 2022-01, Vol.131 (4)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-eaf0e3fe7702b54011e95be58532431f314fc67e345688562ce540c93e1dd9d13</citedby><cites>FETCH-LOGICAL-c362t-eaf0e3fe7702b54011e95be58532431f314fc67e345688562ce540c93e1dd9d13</cites><orcidid>0000-0002-1033-0244 ; 0000-0003-4879-8261 ; 0000-0003-0398-1919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0077710$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Öhman, Johan</creatorcontrib><creatorcontrib>Gren, Per</creatorcontrib><creatorcontrib>Sjödahl, Mikael</creatorcontrib><creatorcontrib>Lundström, T. Staffan</creatorcontrib><title>Experimental investigation of face mask filtration in the 15–150 μm range for stationary flows</title><title>Journal of applied physics</title><description>The effectiveness of face masks for preventing airborne transmission has been debated heavily during the COVID-19 pandemic. This paper investigates the filtration efficiency for four different face mask materials, two professional and two homemade, for different airflow conditions using model experiments and artificially generated water droplets. The size range chosen represents particles with the largest volume that can be suspended in air. The particles are detected using double pulsed interferometric particle imaging, from which it is possible to estimate the positions, velocity, and size of individual particles. It is found that all the tested face masks are efficient in preventing particles from transmission through the mask material. In the presence of leakage, particles larger than approximately 100 μ m are completely removed from the air stream. The filtration efficiency decreases with the decreasing particle size to approximately 80 % for 15 μ m particles. The size dependency in the leakage is mainly due to the momentum of the larger particles. The results show that even simple face mask materials with leakage prevent a large portion of the emitted particles in the 15–150  μ m range.</description><subject>Air flow</subject><subject>Applied physics</subject><subject>COVID-19</subject><subject>Filtration</subject><subject>Leakage</subject><subject>Masks</subject><subject>Water drops</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkD1OwzAUxy0EEqUwcANLTCClPNtxnIyo4kuqxAKz5Tp2SUnjYKcFtq7MXIczcIieBEMqsTM96emn_xdCxwRGBDJ2zkcAQggCO2hAIC8SwTnsogEAJUleiGIfHYQwByAkZ8UA6cvX1vhqYZpO1bhqViZ01Ux1lWuws9gqbfBChSdsq7rz_b9qcPdoMOGb9QfhsFm_f30usFfNzGDrPA7dL6f8G7a1ewmHaM-qOpij7R2ih6vL-_FNMrm7vh1fTBLNMtolRlkwzBohgE55GhOagk8NzzmjKSOWkdTqTBiW8izPeUa1iZQumCFlWZSEDdFJr9t697yMReTcLX0TLSXNKEtzClFoiE57SnsXgjdWtrF_DCsJyJ8NJZfbDSN71rNBV32p_8Er5_9A2ZaWfQNB4YFl</recordid><startdate>20220131</startdate><enddate>20220131</enddate><creator>Öhman, Johan</creator><creator>Gren, Per</creator><creator>Sjödahl, Mikael</creator><creator>Lundström, T. Staffan</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1033-0244</orcidid><orcidid>https://orcid.org/0000-0003-4879-8261</orcidid><orcidid>https://orcid.org/0000-0003-0398-1919</orcidid></search><sort><creationdate>20220131</creationdate><title>Experimental investigation of face mask filtration in the 15–150 μm range for stationary flows</title><author>Öhman, Johan ; Gren, Per ; Sjödahl, Mikael ; Lundström, T. Staffan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-eaf0e3fe7702b54011e95be58532431f314fc67e345688562ce540c93e1dd9d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air flow</topic><topic>Applied physics</topic><topic>COVID-19</topic><topic>Filtration</topic><topic>Leakage</topic><topic>Masks</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Öhman, Johan</creatorcontrib><creatorcontrib>Gren, Per</creatorcontrib><creatorcontrib>Sjödahl, Mikael</creatorcontrib><creatorcontrib>Lundström, T. Staffan</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Öhman, Johan</au><au>Gren, Per</au><au>Sjödahl, Mikael</au><au>Lundström, T. Staffan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of face mask filtration in the 15–150 μm range for stationary flows</atitle><jtitle>Journal of applied physics</jtitle><date>2022-01-31</date><risdate>2022</risdate><volume>131</volume><issue>4</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The effectiveness of face masks for preventing airborne transmission has been debated heavily during the COVID-19 pandemic. This paper investigates the filtration efficiency for four different face mask materials, two professional and two homemade, for different airflow conditions using model experiments and artificially generated water droplets. The size range chosen represents particles with the largest volume that can be suspended in air. The particles are detected using double pulsed interferometric particle imaging, from which it is possible to estimate the positions, velocity, and size of individual particles. It is found that all the tested face masks are efficient in preventing particles from transmission through the mask material. In the presence of leakage, particles larger than approximately 100 μ m are completely removed from the air stream. The filtration efficiency decreases with the decreasing particle size to approximately 80 % for 15 μ m particles. The size dependency in the leakage is mainly due to the momentum of the larger particles. The results show that even simple face mask materials with leakage prevent a large portion of the emitted particles in the 15–150  μ m range.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0077710</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1033-0244</orcidid><orcidid>https://orcid.org/0000-0003-4879-8261</orcidid><orcidid>https://orcid.org/0000-0003-0398-1919</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-01, Vol.131 (4)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2623482024
source AIP Journals Complete; Alma/SFX Local Collection
subjects Air flow
Applied physics
COVID-19
Filtration
Leakage
Masks
Water drops
title Experimental investigation of face mask filtration in the 15–150 μm range for stationary flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20face%20mask%20filtration%20in%20the%2015%E2%80%93150%E2%80%89%CE%BCm%20range%20for%20stationary%20flows&rft.jtitle=Journal%20of%20applied%20physics&rft.au=%C3%96hman,%20Johan&rft.date=2022-01-31&rft.volume=131&rft.issue=4&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0077710&rft_dat=%3Cproquest_scita%3E2623482024%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623482024&rft_id=info:pmid/&rfr_iscdi=true