Transfer Learning-Based Parallel Evolutionary Algorithm Framework for Bilevel Optimization
Evolutionary algorithms (EAs) have been recognized as a promising approach for bilevel optimization. However, the population-based characteristic of EAs largely influences their efficiency and effectiveness due to the nested structure of the two levels of optimization problems. In this article, we p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2022-02, Vol.26 (1), p.115-129 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 1 |
container_start_page | 115 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 26 |
creator | Chen, Lei Liu, Hai-Lin Tan, Kay Chen Li, Ke |
description | Evolutionary algorithms (EAs) have been recognized as a promising approach for bilevel optimization. However, the population-based characteristic of EAs largely influences their efficiency and effectiveness due to the nested structure of the two levels of optimization problems. In this article, we propose a transfer learning-based parallel EA (TLEA) framework for bilevel optimization. In this framework, the task of optimizing a set of lower level problems parameterized by upper level variables is conducted in a parallel manner. In the meanwhile, a transfer learning strategy is developed to improve the effectiveness of each lower level search (LLS) process. In practice, we implement two versions of the TLEA: the first version uses the covariance matrix adaptation evolutionary strategy and the second version uses the differential evolution as the evolutionary operator in lower level optimization. The experimental studies on two sets of widely used bilevel optimization benchmark problems are conducted, and the performance of the two TLEA implementations is compared to that of four well-established evolutionary bilevel optimization algorithms to verify the effectiveness and efficiency of the proposed algorithm framework. |
doi_str_mv | 10.1109/TEVC.2021.3095313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2623469688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9476019</ieee_id><sourcerecordid>2623469688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-8ec6d6573bbb3e9df155a2ca7d8784335111b56b1e1a351f67538161865cb49c3</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQHwp-NyZS5o0edzGpsJgPkwRX0LapjOzbWbSbeint2XDp7uD3_-O-yF0C3gEgOXDavY2HRFMYESxZBToGRqATCDGmPDzrsdCxmkq3i_RVQgbjCFhIAfoY-V1E0rjo4XRvrHNOp7oYIroRXtdVaaKZntX7VrrGu1_onG1dt62n3U097o2B-e_otL5aGIrs-_g5ba1tf3VPX-NLkpdBXNzqkP0Op-tpk_xYvn4PB0v4pwQ2sbC5LzgLKVZllEjixIY0yTXaSFSkVDKACBjPAMDuhtKnjIqgIPgLM8SmdMhuj_u3Xr3vTOhVRu38013UhFOaMIlF6Kj4Ejl3oXgTam23tbdTwqw6hWqXqHqFaqTwi5zd8xYY8w_L5OUY5D0D5kNbVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469688</pqid></control><display><type>article</type><title>Transfer Learning-Based Parallel Evolutionary Algorithm Framework for Bilevel Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Lei ; Liu, Hai-Lin ; Tan, Kay Chen ; Li, Ke</creator><creatorcontrib>Chen, Lei ; Liu, Hai-Lin ; Tan, Kay Chen ; Li, Ke</creatorcontrib><description>Evolutionary algorithms (EAs) have been recognized as a promising approach for bilevel optimization. However, the population-based characteristic of EAs largely influences their efficiency and effectiveness due to the nested structure of the two levels of optimization problems. In this article, we propose a transfer learning-based parallel EA (TLEA) framework for bilevel optimization. In this framework, the task of optimizing a set of lower level problems parameterized by upper level variables is conducted in a parallel manner. In the meanwhile, a transfer learning strategy is developed to improve the effectiveness of each lower level search (LLS) process. In practice, we implement two versions of the TLEA: the first version uses the covariance matrix adaptation evolutionary strategy and the second version uses the differential evolution as the evolutionary operator in lower level optimization. The experimental studies on two sets of widely used bilevel optimization benchmark problems are conducted, and the performance of the two TLEA implementations is compared to that of four well-established evolutionary bilevel optimization algorithms to verify the effectiveness and efficiency of the proposed algorithm framework.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2021.3095313</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation algorithms ; Bilevel optimization ; Covariance matrices ; Covariance matrix ; differential evolution (DE) ; evolutionary algorithm (EA) ; Evolutionary algorithms ; Evolutionary computation ; Genetic algorithms ; Heuristic algorithms ; Machine learning ; Operators (mathematics) ; Optimization ; Search problems ; Task analysis ; Transfer learning</subject><ispartof>IEEE transactions on evolutionary computation, 2022-02, Vol.26 (1), p.115-129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-8ec6d6573bbb3e9df155a2ca7d8784335111b56b1e1a351f67538161865cb49c3</citedby><cites>FETCH-LOGICAL-c223t-8ec6d6573bbb3e9df155a2ca7d8784335111b56b1e1a351f67538161865cb49c3</cites><orcidid>0000-0003-2276-1938 ; 0000-0002-6802-2463 ; 0000-0003-1423-3481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9476019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9476019$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Liu, Hai-Lin</creatorcontrib><creatorcontrib>Tan, Kay Chen</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><title>Transfer Learning-Based Parallel Evolutionary Algorithm Framework for Bilevel Optimization</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Evolutionary algorithms (EAs) have been recognized as a promising approach for bilevel optimization. However, the population-based characteristic of EAs largely influences their efficiency and effectiveness due to the nested structure of the two levels of optimization problems. In this article, we propose a transfer learning-based parallel EA (TLEA) framework for bilevel optimization. In this framework, the task of optimizing a set of lower level problems parameterized by upper level variables is conducted in a parallel manner. In the meanwhile, a transfer learning strategy is developed to improve the effectiveness of each lower level search (LLS) process. In practice, we implement two versions of the TLEA: the first version uses the covariance matrix adaptation evolutionary strategy and the second version uses the differential evolution as the evolutionary operator in lower level optimization. The experimental studies on two sets of widely used bilevel optimization benchmark problems are conducted, and the performance of the two TLEA implementations is compared to that of four well-established evolutionary bilevel optimization algorithms to verify the effectiveness and efficiency of the proposed algorithm framework.</description><subject>Approximation algorithms</subject><subject>Bilevel optimization</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>differential evolution (DE)</subject><subject>evolutionary algorithm (EA)</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Search problems</subject><subject>Task analysis</subject><subject>Transfer learning</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKcfQHwp-NyZS5o0edzGpsJgPkwRX0LapjOzbWbSbeint2XDp7uD3_-O-yF0C3gEgOXDavY2HRFMYESxZBToGRqATCDGmPDzrsdCxmkq3i_RVQgbjCFhIAfoY-V1E0rjo4XRvrHNOp7oYIroRXtdVaaKZntX7VrrGu1_onG1dt62n3U097o2B-e_otL5aGIrs-_g5ba1tf3VPX-NLkpdBXNzqkP0Op-tpk_xYvn4PB0v4pwQ2sbC5LzgLKVZllEjixIY0yTXaSFSkVDKACBjPAMDuhtKnjIqgIPgLM8SmdMhuj_u3Xr3vTOhVRu38013UhFOaMIlF6Kj4Ejl3oXgTam23tbdTwqw6hWqXqHqFaqTwi5zd8xYY8w_L5OUY5D0D5kNbVU</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Lei</creator><creator>Liu, Hai-Lin</creator><creator>Tan, Kay Chen</creator><creator>Li, Ke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2276-1938</orcidid><orcidid>https://orcid.org/0000-0002-6802-2463</orcidid><orcidid>https://orcid.org/0000-0003-1423-3481</orcidid></search><sort><creationdate>20220201</creationdate><title>Transfer Learning-Based Parallel Evolutionary Algorithm Framework for Bilevel Optimization</title><author>Chen, Lei ; Liu, Hai-Lin ; Tan, Kay Chen ; Li, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-8ec6d6573bbb3e9df155a2ca7d8784335111b56b1e1a351f67538161865cb49c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation algorithms</topic><topic>Bilevel optimization</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>differential evolution (DE)</topic><topic>evolutionary algorithm (EA)</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Search problems</topic><topic>Task analysis</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Liu, Hai-Lin</creatorcontrib><creatorcontrib>Tan, Kay Chen</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Lei</au><au>Liu, Hai-Lin</au><au>Tan, Kay Chen</au><au>Li, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer Learning-Based Parallel Evolutionary Algorithm Framework for Bilevel Optimization</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>26</volume><issue>1</issue><spage>115</spage><epage>129</epage><pages>115-129</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Evolutionary algorithms (EAs) have been recognized as a promising approach for bilevel optimization. However, the population-based characteristic of EAs largely influences their efficiency and effectiveness due to the nested structure of the two levels of optimization problems. In this article, we propose a transfer learning-based parallel EA (TLEA) framework for bilevel optimization. In this framework, the task of optimizing a set of lower level problems parameterized by upper level variables is conducted in a parallel manner. In the meanwhile, a transfer learning strategy is developed to improve the effectiveness of each lower level search (LLS) process. In practice, we implement two versions of the TLEA: the first version uses the covariance matrix adaptation evolutionary strategy and the second version uses the differential evolution as the evolutionary operator in lower level optimization. The experimental studies on two sets of widely used bilevel optimization benchmark problems are conducted, and the performance of the two TLEA implementations is compared to that of four well-established evolutionary bilevel optimization algorithms to verify the effectiveness and efficiency of the proposed algorithm framework.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2021.3095313</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2276-1938</orcidid><orcidid>https://orcid.org/0000-0002-6802-2463</orcidid><orcidid>https://orcid.org/0000-0003-1423-3481</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2022-02, Vol.26 (1), p.115-129 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_journals_2623469688 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation algorithms Bilevel optimization Covariance matrices Covariance matrix differential evolution (DE) evolutionary algorithm (EA) Evolutionary algorithms Evolutionary computation Genetic algorithms Heuristic algorithms Machine learning Operators (mathematics) Optimization Search problems Task analysis Transfer learning |
title | Transfer Learning-Based Parallel Evolutionary Algorithm Framework for Bilevel Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20Learning-Based%20Parallel%20Evolutionary%20Algorithm%20Framework%20for%20Bilevel%20Optimization&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Chen,%20Lei&rft.date=2022-02-01&rft.volume=26&rft.issue=1&rft.spage=115&rft.epage=129&rft.pages=115-129&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2021.3095313&rft_dat=%3Cproquest_RIE%3E2623469688%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623469688&rft_id=info:pmid/&rft_ieee_id=9476019&rfr_iscdi=true |