Complex Convolutional Neural Networks for Ultrafast Ultrasound Imaging Reconstruction From In-Phase/Quadrature Signal
Ultrafast ultrasound imaging remains an active area of interest in the ultrasound community due to its ultrahigh frame rates. Recently, a wide variety of studies based on deep learning have sought to improve ultrafast ultrasound imaging. Most of these approaches have been performed on radio frequenc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2022-02, Vol.69 (2), p.592-603 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 2 |
container_start_page | 592 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 69 |
creator | Lu, Jingfeng Millioz, Fabien Garcia, Damien Salles, Sebastien Ye, Dong Friboulet, Denis |
description | Ultrafast ultrasound imaging remains an active area of interest in the ultrasound community due to its ultrahigh frame rates. Recently, a wide variety of studies based on deep learning have sought to improve ultrafast ultrasound imaging. Most of these approaches have been performed on radio frequency (RF) signals. However, in- phase/quadrature (I/Q) digital beamformers are now widely used as low-cost strategies. In this work, we used complex convolutional neural networks for reconstruction of ultrasound images from I/Q signals. We recently described a convolutional neural network architecture called ID-Net, which exploited an inception layer designed for reconstruction of RF diverging-wave ultrasound images. In the present study, we derive the complex equivalent of this network, i.e., complex-valued inception for diverging-wave network (CID-Net) that operates on I/Q data. We provide experimental evidence that CID-Net provides the same image quality as that obtained from RF-trained convolutional neural networks, i.e., using only three I/Q images, CID-Net produces high-quality images that can compete with those obtained by coherently compounding 31 RF images. Moreover, we show that CID-Net outperforms the straightforward architecture that consists of processing real and imaginary parts of the I/Q signal separately, which thereby indicates the importance of consistently processing the I/Q signals using a network that exploits the complex nature of such signals. |
doi_str_mv | 10.1109/TUFFC.2021.3127916 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2623469564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9614147</ieee_id><sourcerecordid>2623469564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-c9d7acd22fd51f242eddf816a0a314357bdbe5caeba26eb954797081ea32b08c3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EotvCHwAJReJSDtn62_Gxili60ory0T1bTjLZpiTx1o7b8u9JmmUPPY3leeaVPQ9CHwheEoL1xc12tcqXFFOyZIQqTeQrtCCCijTTQrxGC5xlImWY4BN0GsIdxoRzTd-iE8aVVAJnCxRz1-1beEpy1z-4Ng6N622bfIfon8vw6PyfkNTOJ9t28La2YZhPwcW-Stad3TX9LvkFpevD4GM5JSQr77pk3ac_bm2Ai5_RVt4O0UPyu9mN-e_Qm9q2Ad4f6hnarr7e5Ffp5vrbOr_cpCUXZEhLXSlbVpTWlSA15RSqqs6ItNgywplQRVWAKC0UlkootOBKK5wRsIwWOCvZGfoy597a1ux901n_1zjbmKvLjZnuMBMsk1I_kJE9n9m9d_cRwmC6JpTQtrYHF4OhQqtxe0LxEf38Ar1z0Y__GilJGZdayImiM1V6F4KH-vgCgs0k0DwLNJNAcxA4Dn06RMeig-o48t_YCHycgQYAjm0tCSdcsX__OKBl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469564</pqid></control><display><type>article</type><title>Complex Convolutional Neural Networks for Ultrafast Ultrasound Imaging Reconstruction From In-Phase/Quadrature Signal</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Jingfeng ; Millioz, Fabien ; Garcia, Damien ; Salles, Sebastien ; Ye, Dong ; Friboulet, Denis</creator><creatorcontrib>Lu, Jingfeng ; Millioz, Fabien ; Garcia, Damien ; Salles, Sebastien ; Ye, Dong ; Friboulet, Denis</creatorcontrib><description>Ultrafast ultrasound imaging remains an active area of interest in the ultrasound community due to its ultrahigh frame rates. Recently, a wide variety of studies based on deep learning have sought to improve ultrafast ultrasound imaging. Most of these approaches have been performed on radio frequency (RF) signals. However, in- phase/quadrature (I/Q) digital beamformers are now widely used as low-cost strategies. In this work, we used complex convolutional neural networks for reconstruction of ultrasound images from I/Q signals. We recently described a convolutional neural network architecture called ID-Net, which exploited an inception layer designed for reconstruction of RF diverging-wave ultrasound images. In the present study, we derive the complex equivalent of this network, i.e., complex-valued inception for diverging-wave network (CID-Net) that operates on I/Q data. We provide experimental evidence that CID-Net provides the same image quality as that obtained from RF-trained convolutional neural networks, i.e., using only three I/Q images, CID-Net produces high-quality images that can compete with those obtained by coherently compounding 31 RF images. Moreover, we show that CID-Net outperforms the straightforward architecture that consists of processing real and imaginary parts of the I/Q signal separately, which thereby indicates the importance of consistently processing the I/Q signals using a network that exploits the complex nature of such signals.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2021.3127916</identifier><identifier>PMID: 34767508</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Beamforming ; Cardiology and cardiovascular system ; Complex convolutional neural networks ; Computer architecture ; Computer Science ; Convolutional codes ; Convolutional neural networks ; deep learning ; diverging wave ; Fluid Dynamics ; Human health and pathology ; Image Processing, Computer-Assisted - methods ; Image quality ; Image reconstruction ; Imaging ; in-phase/quadrature signal ; Life Sciences ; Medical Imaging ; Neural networks ; Neural Networks, Computer ; Physics ; Quadratures ; Radio frequency ; Radio signals ; Signal and Image Processing ; Signal processing ; ultrafast ultrasound imaging ; Ultrasonic imaging ; Ultrasonography - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2022-02, Vol.69 (2), p.592-603</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-c9d7acd22fd51f242eddf816a0a314357bdbe5caeba26eb954797081ea32b08c3</citedby><cites>FETCH-LOGICAL-c451t-c9d7acd22fd51f242eddf816a0a314357bdbe5caeba26eb954797081ea32b08c3</cites><orcidid>0000-0002-9391-1297 ; 0000-0002-9166-7964 ; 0000-0002-8552-1475 ; 0000-0001-9032-409X ; 0000-0003-3715-5885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9614147$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9614147$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34767508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-03538669$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Jingfeng</creatorcontrib><creatorcontrib>Millioz, Fabien</creatorcontrib><creatorcontrib>Garcia, Damien</creatorcontrib><creatorcontrib>Salles, Sebastien</creatorcontrib><creatorcontrib>Ye, Dong</creatorcontrib><creatorcontrib>Friboulet, Denis</creatorcontrib><title>Complex Convolutional Neural Networks for Ultrafast Ultrasound Imaging Reconstruction From In-Phase/Quadrature Signal</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Ultrafast ultrasound imaging remains an active area of interest in the ultrasound community due to its ultrahigh frame rates. Recently, a wide variety of studies based on deep learning have sought to improve ultrafast ultrasound imaging. Most of these approaches have been performed on radio frequency (RF) signals. However, in- phase/quadrature (I/Q) digital beamformers are now widely used as low-cost strategies. In this work, we used complex convolutional neural networks for reconstruction of ultrasound images from I/Q signals. We recently described a convolutional neural network architecture called ID-Net, which exploited an inception layer designed for reconstruction of RF diverging-wave ultrasound images. In the present study, we derive the complex equivalent of this network, i.e., complex-valued inception for diverging-wave network (CID-Net) that operates on I/Q data. We provide experimental evidence that CID-Net provides the same image quality as that obtained from RF-trained convolutional neural networks, i.e., using only three I/Q images, CID-Net produces high-quality images that can compete with those obtained by coherently compounding 31 RF images. Moreover, we show that CID-Net outperforms the straightforward architecture that consists of processing real and imaginary parts of the I/Q signal separately, which thereby indicates the importance of consistently processing the I/Q signals using a network that exploits the complex nature of such signals.</description><subject>Artificial neural networks</subject><subject>Beamforming</subject><subject>Cardiology and cardiovascular system</subject><subject>Complex convolutional neural networks</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Convolutional codes</subject><subject>Convolutional neural networks</subject><subject>deep learning</subject><subject>diverging wave</subject><subject>Fluid Dynamics</subject><subject>Human health and pathology</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>in-phase/quadrature signal</subject><subject>Life Sciences</subject><subject>Medical Imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Physics</subject><subject>Quadratures</subject><subject>Radio frequency</subject><subject>Radio signals</subject><subject>Signal and Image Processing</subject><subject>Signal processing</subject><subject>ultrafast ultrasound imaging</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EotvCHwAJReJSDtn62_Gxili60ory0T1bTjLZpiTx1o7b8u9JmmUPPY3leeaVPQ9CHwheEoL1xc12tcqXFFOyZIQqTeQrtCCCijTTQrxGC5xlImWY4BN0GsIdxoRzTd-iE8aVVAJnCxRz1-1beEpy1z-4Ng6N622bfIfon8vw6PyfkNTOJ9t28La2YZhPwcW-Stad3TX9LvkFpevD4GM5JSQr77pk3ac_bm2Ai5_RVt4O0UPyu9mN-e_Qm9q2Ad4f6hnarr7e5Ffp5vrbOr_cpCUXZEhLXSlbVpTWlSA15RSqqs6ItNgywplQRVWAKC0UlkootOBKK5wRsIwWOCvZGfoy597a1ux901n_1zjbmKvLjZnuMBMsk1I_kJE9n9m9d_cRwmC6JpTQtrYHF4OhQqtxe0LxEf38Ar1z0Y__GilJGZdayImiM1V6F4KH-vgCgs0k0DwLNJNAcxA4Dn06RMeig-o48t_YCHycgQYAjm0tCSdcsX__OKBl</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Lu, Jingfeng</creator><creator>Millioz, Fabien</creator><creator>Garcia, Damien</creator><creator>Salles, Sebastien</creator><creator>Ye, Dong</creator><creator>Friboulet, Denis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9391-1297</orcidid><orcidid>https://orcid.org/0000-0002-9166-7964</orcidid><orcidid>https://orcid.org/0000-0002-8552-1475</orcidid><orcidid>https://orcid.org/0000-0001-9032-409X</orcidid><orcidid>https://orcid.org/0000-0003-3715-5885</orcidid></search><sort><creationdate>20220201</creationdate><title>Complex Convolutional Neural Networks for Ultrafast Ultrasound Imaging Reconstruction From In-Phase/Quadrature Signal</title><author>Lu, Jingfeng ; Millioz, Fabien ; Garcia, Damien ; Salles, Sebastien ; Ye, Dong ; Friboulet, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-c9d7acd22fd51f242eddf816a0a314357bdbe5caeba26eb954797081ea32b08c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Beamforming</topic><topic>Cardiology and cardiovascular system</topic><topic>Complex convolutional neural networks</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Convolutional codes</topic><topic>Convolutional neural networks</topic><topic>deep learning</topic><topic>diverging wave</topic><topic>Fluid Dynamics</topic><topic>Human health and pathology</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>in-phase/quadrature signal</topic><topic>Life Sciences</topic><topic>Medical Imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Physics</topic><topic>Quadratures</topic><topic>Radio frequency</topic><topic>Radio signals</topic><topic>Signal and Image Processing</topic><topic>Signal processing</topic><topic>ultrafast ultrasound imaging</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jingfeng</creatorcontrib><creatorcontrib>Millioz, Fabien</creatorcontrib><creatorcontrib>Garcia, Damien</creatorcontrib><creatorcontrib>Salles, Sebastien</creatorcontrib><creatorcontrib>Ye, Dong</creatorcontrib><creatorcontrib>Friboulet, Denis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Jingfeng</au><au>Millioz, Fabien</au><au>Garcia, Damien</au><au>Salles, Sebastien</au><au>Ye, Dong</au><au>Friboulet, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Convolutional Neural Networks for Ultrafast Ultrasound Imaging Reconstruction From In-Phase/Quadrature Signal</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>69</volume><issue>2</issue><spage>592</spage><epage>603</epage><pages>592-603</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Ultrafast ultrasound imaging remains an active area of interest in the ultrasound community due to its ultrahigh frame rates. Recently, a wide variety of studies based on deep learning have sought to improve ultrafast ultrasound imaging. Most of these approaches have been performed on radio frequency (RF) signals. However, in- phase/quadrature (I/Q) digital beamformers are now widely used as low-cost strategies. In this work, we used complex convolutional neural networks for reconstruction of ultrasound images from I/Q signals. We recently described a convolutional neural network architecture called ID-Net, which exploited an inception layer designed for reconstruction of RF diverging-wave ultrasound images. In the present study, we derive the complex equivalent of this network, i.e., complex-valued inception for diverging-wave network (CID-Net) that operates on I/Q data. We provide experimental evidence that CID-Net provides the same image quality as that obtained from RF-trained convolutional neural networks, i.e., using only three I/Q images, CID-Net produces high-quality images that can compete with those obtained by coherently compounding 31 RF images. Moreover, we show that CID-Net outperforms the straightforward architecture that consists of processing real and imaginary parts of the I/Q signal separately, which thereby indicates the importance of consistently processing the I/Q signals using a network that exploits the complex nature of such signals.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34767508</pmid><doi>10.1109/TUFFC.2021.3127916</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9391-1297</orcidid><orcidid>https://orcid.org/0000-0002-9166-7964</orcidid><orcidid>https://orcid.org/0000-0002-8552-1475</orcidid><orcidid>https://orcid.org/0000-0001-9032-409X</orcidid><orcidid>https://orcid.org/0000-0003-3715-5885</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2022-02, Vol.69 (2), p.592-603 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_journals_2623469564 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Beamforming Cardiology and cardiovascular system Complex convolutional neural networks Computer architecture Computer Science Convolutional codes Convolutional neural networks deep learning diverging wave Fluid Dynamics Human health and pathology Image Processing, Computer-Assisted - methods Image quality Image reconstruction Imaging in-phase/quadrature signal Life Sciences Medical Imaging Neural networks Neural Networks, Computer Physics Quadratures Radio frequency Radio signals Signal and Image Processing Signal processing ultrafast ultrasound imaging Ultrasonic imaging Ultrasonography - methods |
title | Complex Convolutional Neural Networks for Ultrafast Ultrasound Imaging Reconstruction From In-Phase/Quadrature Signal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T22%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Convolutional%20Neural%20Networks%20for%20Ultrafast%20Ultrasound%20Imaging%20Reconstruction%20From%20In-Phase/Quadrature%20Signal&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Lu,%20Jingfeng&rft.date=2022-02-01&rft.volume=69&rft.issue=2&rft.spage=592&rft.epage=603&rft.pages=592-603&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2021.3127916&rft_dat=%3Cproquest_RIE%3E2623469564%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623469564&rft_id=info:pmid/34767508&rft_ieee_id=9614147&rfr_iscdi=true |