A Method for Mitigation of Droop Timing Errors Including a 500 MHz Droop Detector and Dual Mode Logic

A technique to mitigate timing errors induced by power supply droops is featured. We propose an inverter-based droop detector as well as dual mode logic (DML) to achieve a droop-resistant timing response. The droop detector is based on capacitor ratios and is thus less sensitive to process/voltage/t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2022-02, Vol.57 (2), p.596-608
Hauptverfasser: Shifman, Yizhak, Stanger, Inbal, Shavit, Netanel, Taco, Ramiro, Fish, Alexander, Shor, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 608
container_issue 2
container_start_page 596
container_title IEEE journal of solid-state circuits
container_volume 57
creator Shifman, Yizhak
Stanger, Inbal
Shavit, Netanel
Taco, Ramiro
Fish, Alexander
Shor, Joseph
description A technique to mitigate timing errors induced by power supply droops is featured. We propose an inverter-based droop detector as well as dual mode logic (DML) to achieve a droop-resistant timing response. The droop detector is based on capacitor ratios and is thus less sensitive to process/voltage/temperature (PVT) and to random offset than the prior art. The DML can alter its power/performance ratio based on the droop level input it receives from the detector, such that the critical timings are preserved. A prototype instantiating a demo of the scheme was fabricated in a TSMC 65 nm process, incorporating a simultaneous three-level detector and a DML-based ripple carry adder (RCA). The droop detector consumes 62 \mu \text{W} , has a response time of 2 ns, and an accuracy of 0.9% of Vdd, making it one of the fastest, most accurate, and lowest power droop detectors in its class. The RCA can maintain timing for voltage droops up to 400 mV. A potential supply level reduction of up to 12% was demonstrated for the RCA, and a similar reduction could be achieved with larger-scale DML digital circuits as well.
doi_str_mv 10.1109/JSSC.2021.3091586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623469543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9474918</ieee_id><sourcerecordid>2623469543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-12b6015ff31d22135d52a4e85bd6ea1c7e9e49933a505040500d7ba8c3e02cbc3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N5GN3cyyt2koXD63gLWSTbE1pNzW7e9Bf7y4tHoZhhuedgQeheyATACKf3tbr2YQSChNGJIg8vUAjECJPIGOfl2hECOSJpIRco5um2fUj5zmMkJviwrVfweIqRFz41m9160ONQ4XnMYQj3viDr7f4OcYQG7yszb6zw0JjQQguFr9nbu5aZ9r-iK4tnnd6j4tgHV6FrTe36KrS-8bdnfsYfbw8b2aLZPX-upxNV4lhLG0ToGVKQFQVA0spMGEF1dzlorSp02AyJx2XkjEtiCC8L2KzUueGOUJNadgYPZ7uHmP47lzTql3oYt2_VDSljKdScNZTcKJMDE0TXaWO0R90_FFA1GBTDTbVYFOdbfaZh1PGO-f-eckzLiFnf9bnbl0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469543</pqid></control><display><type>article</type><title>A Method for Mitigation of Droop Timing Errors Including a 500 MHz Droop Detector and Dual Mode Logic</title><source>IEEE Electronic Library (IEL)</source><creator>Shifman, Yizhak ; Stanger, Inbal ; Shavit, Netanel ; Taco, Ramiro ; Fish, Alexander ; Shor, Joseph</creator><creatorcontrib>Shifman, Yizhak ; Stanger, Inbal ; Shavit, Netanel ; Taco, Ramiro ; Fish, Alexander ; Shor, Joseph</creatorcontrib><description>A technique to mitigate timing errors induced by power supply droops is featured. We propose an inverter-based droop detector as well as dual mode logic (DML) to achieve a droop-resistant timing response. The droop detector is based on capacitor ratios and is thus less sensitive to process/voltage/temperature (PVT) and to random offset than the prior art. The DML can alter its power/performance ratio based on the droop level input it receives from the detector, such that the critical timings are preserved. A prototype instantiating a demo of the scheme was fabricated in a TSMC 65 nm process, incorporating a simultaneous three-level detector and a DML-based ripple carry adder (RCA). The droop detector consumes 62 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{W} &lt;/tex-math&gt;&lt;/inline-formula&gt;, has a response time of 2 ns, and an accuracy of 0.9% of Vdd, making it one of the fastest, most accurate, and lowest power droop detectors in its class. The RCA can maintain timing for voltage droops up to 400 mV. A potential supply level reduction of up to 12% was demonstrated for the RCA, and a similar reduction could be achieved with larger-scale DML digital circuits as well.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2021.3091586</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive circuits ; Capacitors ; Clocks ; Detectors ; Digital electronics ; droop detector ; droop mitigation ; dual mode logic (DML) ; Electric potential ; Errors ; Inverters ; Logic gates ; Reduction ; Resonant frequency ; Response time ; Sensors ; Timing ; Voltage</subject><ispartof>IEEE journal of solid-state circuits, 2022-02, Vol.57 (2), p.596-608</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-12b6015ff31d22135d52a4e85bd6ea1c7e9e49933a505040500d7ba8c3e02cbc3</citedby><cites>FETCH-LOGICAL-c336t-12b6015ff31d22135d52a4e85bd6ea1c7e9e49933a505040500d7ba8c3e02cbc3</cites><orcidid>0000-0003-1089-1081 ; 0000-0002-9038-1278 ; 0000-0002-9184-8642 ; 0000-0003-2011-6329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9474918$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Shifman, Yizhak</creatorcontrib><creatorcontrib>Stanger, Inbal</creatorcontrib><creatorcontrib>Shavit, Netanel</creatorcontrib><creatorcontrib>Taco, Ramiro</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Shor, Joseph</creatorcontrib><title>A Method for Mitigation of Droop Timing Errors Including a 500 MHz Droop Detector and Dual Mode Logic</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>A technique to mitigate timing errors induced by power supply droops is featured. We propose an inverter-based droop detector as well as dual mode logic (DML) to achieve a droop-resistant timing response. The droop detector is based on capacitor ratios and is thus less sensitive to process/voltage/temperature (PVT) and to random offset than the prior art. The DML can alter its power/performance ratio based on the droop level input it receives from the detector, such that the critical timings are preserved. A prototype instantiating a demo of the scheme was fabricated in a TSMC 65 nm process, incorporating a simultaneous three-level detector and a DML-based ripple carry adder (RCA). The droop detector consumes 62 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{W} &lt;/tex-math&gt;&lt;/inline-formula&gt;, has a response time of 2 ns, and an accuracy of 0.9% of Vdd, making it one of the fastest, most accurate, and lowest power droop detectors in its class. The RCA can maintain timing for voltage droops up to 400 mV. A potential supply level reduction of up to 12% was demonstrated for the RCA, and a similar reduction could be achieved with larger-scale DML digital circuits as well.</description><subject>Adaptive circuits</subject><subject>Capacitors</subject><subject>Clocks</subject><subject>Detectors</subject><subject>Digital electronics</subject><subject>droop detector</subject><subject>droop mitigation</subject><subject>dual mode logic (DML)</subject><subject>Electric potential</subject><subject>Errors</subject><subject>Inverters</subject><subject>Logic gates</subject><subject>Reduction</subject><subject>Resonant frequency</subject><subject>Response time</subject><subject>Sensors</subject><subject>Timing</subject><subject>Voltage</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N5GN3cyyt2koXD63gLWSTbE1pNzW7e9Bf7y4tHoZhhuedgQeheyATACKf3tbr2YQSChNGJIg8vUAjECJPIGOfl2hECOSJpIRco5um2fUj5zmMkJviwrVfweIqRFz41m9160ONQ4XnMYQj3viDr7f4OcYQG7yszb6zw0JjQQguFr9nbu5aZ9r-iK4tnnd6j4tgHV6FrTe36KrS-8bdnfsYfbw8b2aLZPX-upxNV4lhLG0ToGVKQFQVA0spMGEF1dzlorSp02AyJx2XkjEtiCC8L2KzUueGOUJNadgYPZ7uHmP47lzTql3oYt2_VDSljKdScNZTcKJMDE0TXaWO0R90_FFA1GBTDTbVYFOdbfaZh1PGO-f-eckzLiFnf9bnbl0</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Shifman, Yizhak</creator><creator>Stanger, Inbal</creator><creator>Shavit, Netanel</creator><creator>Taco, Ramiro</creator><creator>Fish, Alexander</creator><creator>Shor, Joseph</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1089-1081</orcidid><orcidid>https://orcid.org/0000-0002-9038-1278</orcidid><orcidid>https://orcid.org/0000-0002-9184-8642</orcidid><orcidid>https://orcid.org/0000-0003-2011-6329</orcidid></search><sort><creationdate>20220201</creationdate><title>A Method for Mitigation of Droop Timing Errors Including a 500 MHz Droop Detector and Dual Mode Logic</title><author>Shifman, Yizhak ; Stanger, Inbal ; Shavit, Netanel ; Taco, Ramiro ; Fish, Alexander ; Shor, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-12b6015ff31d22135d52a4e85bd6ea1c7e9e49933a505040500d7ba8c3e02cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive circuits</topic><topic>Capacitors</topic><topic>Clocks</topic><topic>Detectors</topic><topic>Digital electronics</topic><topic>droop detector</topic><topic>droop mitigation</topic><topic>dual mode logic (DML)</topic><topic>Electric potential</topic><topic>Errors</topic><topic>Inverters</topic><topic>Logic gates</topic><topic>Reduction</topic><topic>Resonant frequency</topic><topic>Response time</topic><topic>Sensors</topic><topic>Timing</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shifman, Yizhak</creatorcontrib><creatorcontrib>Stanger, Inbal</creatorcontrib><creatorcontrib>Shavit, Netanel</creatorcontrib><creatorcontrib>Taco, Ramiro</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Shor, Joseph</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shifman, Yizhak</au><au>Stanger, Inbal</au><au>Shavit, Netanel</au><au>Taco, Ramiro</au><au>Fish, Alexander</au><au>Shor, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Mitigation of Droop Timing Errors Including a 500 MHz Droop Detector and Dual Mode Logic</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>57</volume><issue>2</issue><spage>596</spage><epage>608</epage><pages>596-608</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>A technique to mitigate timing errors induced by power supply droops is featured. We propose an inverter-based droop detector as well as dual mode logic (DML) to achieve a droop-resistant timing response. The droop detector is based on capacitor ratios and is thus less sensitive to process/voltage/temperature (PVT) and to random offset than the prior art. The DML can alter its power/performance ratio based on the droop level input it receives from the detector, such that the critical timings are preserved. A prototype instantiating a demo of the scheme was fabricated in a TSMC 65 nm process, incorporating a simultaneous three-level detector and a DML-based ripple carry adder (RCA). The droop detector consumes 62 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{W} &lt;/tex-math&gt;&lt;/inline-formula&gt;, has a response time of 2 ns, and an accuracy of 0.9% of Vdd, making it one of the fastest, most accurate, and lowest power droop detectors in its class. The RCA can maintain timing for voltage droops up to 400 mV. A potential supply level reduction of up to 12% was demonstrated for the RCA, and a similar reduction could be achieved with larger-scale DML digital circuits as well.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2021.3091586</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1089-1081</orcidid><orcidid>https://orcid.org/0000-0002-9038-1278</orcidid><orcidid>https://orcid.org/0000-0002-9184-8642</orcidid><orcidid>https://orcid.org/0000-0003-2011-6329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2022-02, Vol.57 (2), p.596-608
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_journals_2623469543
source IEEE Electronic Library (IEL)
subjects Adaptive circuits
Capacitors
Clocks
Detectors
Digital electronics
droop detector
droop mitigation
dual mode logic (DML)
Electric potential
Errors
Inverters
Logic gates
Reduction
Resonant frequency
Response time
Sensors
Timing
Voltage
title A Method for Mitigation of Droop Timing Errors Including a 500 MHz Droop Detector and Dual Mode Logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Mitigation%20of%20Droop%20Timing%20Errors%20Including%20a%20500%20MHz%20Droop%20Detector%20and%20Dual%20Mode%20Logic&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Shifman,%20Yizhak&rft.date=2022-02-01&rft.volume=57&rft.issue=2&rft.spage=596&rft.epage=608&rft.pages=596-608&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2021.3091586&rft_dat=%3Cproquest_cross%3E2623469543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623469543&rft_id=info:pmid/&rft_ieee_id=9474918&rfr_iscdi=true