Predicting activities of daily living via temporal point processes: Approaches and experimental results
Activity Prediction is foreseeing the following activity people are going to execute. This is a crucial task in smart home environments, i.e., in order to facilitate the daily routines of elderly people with or without special needs. In this paper, we focused on Activity Daily Living prediction and...
Gespeichert in:
Veröffentlicht in: | Computers & electrical engineering 2021-12, Vol.96, p.107567, Article 107567 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107567 |
container_title | Computers & electrical engineering |
container_volume | 96 |
creator | Fortino, Giancarlo Guzzo, Antonella Ianni, Michele Leotta, Francesco Mecella, Massimo |
description | Activity Prediction is foreseeing the following activity people are going to execute. This is a crucial task in smart home environments, i.e., in order to facilitate the daily routines of elderly people with or without special needs. In this paper, we focused on Activity Daily Living prediction and we proposed a novel activity prediction technique based on the combination of Marked Temporal Point Processes and Neural Networks. Experiments on real and synthetic smart space datasets have shown that our approach is able to conveniently represent and predict daily living activities in an unsupervised way. We evaluated its performance and compared its results with state-of-the-art methods providing freely available implementations. Noticeably, the proposed approach outperforms the best concurrent algorithm by obtaining an improvement of F1-score of 60% (on average of the considered datasets). |
doi_str_mv | 10.1016/j.compeleceng.2021.107567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623464022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790621005073</els_id><sourcerecordid>2623464022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e3b49968fe0baf5ca77209d8bff8cb25d71ac081ae5327929eba0cbb819cc9b83</originalsourceid><addsrcrecordid>eNqNkE1PAyEQhonRxFr9DxjPW4H9ALw1jV9JEz3omQA7W2m2ywq00X8vzXrw6GnyDu87MzwIXVOyoIQ2t9uF9bsRerAwbBaMMJr7vG74CZpRwWWRRX2KZoRUdcElac7RRYxbknVDxQxtXgO0ziY3bLDO5eCSg4h9h1vt-m_c505-OjiNE-xGH3SPR--GhMfgLcQI8Q4vxyy0_chBPbQYvkYIbgdDyuYAcd-neInOOt1HuPqtc_T-cP-2eirWL4_Pq-W6sGUlUwGlqaRsRAfE6K62mnNGZCtM1wlrWN1yqi0RVENdMi6ZBKOJNUZQaa00opyjm2luvuhzDzGprd-HIa9UrGFl1VSEseySk8sGH2OATo35YB2-FSXqyFVt1R-u6shVTVxzdjVlIX_j4CCoaB0MNmMMYJNqvfvHlB8XyYoD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623464022</pqid></control><display><type>article</type><title>Predicting activities of daily living via temporal point processes: Approaches and experimental results</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fortino, Giancarlo ; Guzzo, Antonella ; Ianni, Michele ; Leotta, Francesco ; Mecella, Massimo</creator><creatorcontrib>Fortino, Giancarlo ; Guzzo, Antonella ; Ianni, Michele ; Leotta, Francesco ; Mecella, Massimo</creatorcontrib><description>Activity Prediction is foreseeing the following activity people are going to execute. This is a crucial task in smart home environments, i.e., in order to facilitate the daily routines of elderly people with or without special needs. In this paper, we focused on Activity Daily Living prediction and we proposed a novel activity prediction technique based on the combination of Marked Temporal Point Processes and Neural Networks. Experiments on real and synthetic smart space datasets have shown that our approach is able to conveniently represent and predict daily living activities in an unsupervised way. We evaluated its performance and compared its results with state-of-the-art methods providing freely available implementations. Noticeably, the proposed approach outperforms the best concurrent algorithm by obtaining an improvement of F1-score of 60% (on average of the considered datasets).</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2021.107567</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Activities of daily living ; Activity prediction ; Algorithms ; Ambient assisted living ; Datasets ; Marked temporal point processes ; Neural networks ; Smart buildings</subject><ispartof>Computers & electrical engineering, 2021-12, Vol.96, p.107567, Article 107567</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e3b49968fe0baf5ca77209d8bff8cb25d71ac081ae5327929eba0cbb819cc9b83</citedby><cites>FETCH-LOGICAL-c349t-e3b49968fe0baf5ca77209d8bff8cb25d71ac081ae5327929eba0cbb819cc9b83</cites><orcidid>0000-0002-9730-8882 ; 0000-0003-3159-0536 ; 0000-0003-0562-7462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compeleceng.2021.107567$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Fortino, Giancarlo</creatorcontrib><creatorcontrib>Guzzo, Antonella</creatorcontrib><creatorcontrib>Ianni, Michele</creatorcontrib><creatorcontrib>Leotta, Francesco</creatorcontrib><creatorcontrib>Mecella, Massimo</creatorcontrib><title>Predicting activities of daily living via temporal point processes: Approaches and experimental results</title><title>Computers & electrical engineering</title><description>Activity Prediction is foreseeing the following activity people are going to execute. This is a crucial task in smart home environments, i.e., in order to facilitate the daily routines of elderly people with or without special needs. In this paper, we focused on Activity Daily Living prediction and we proposed a novel activity prediction technique based on the combination of Marked Temporal Point Processes and Neural Networks. Experiments on real and synthetic smart space datasets have shown that our approach is able to conveniently represent and predict daily living activities in an unsupervised way. We evaluated its performance and compared its results with state-of-the-art methods providing freely available implementations. Noticeably, the proposed approach outperforms the best concurrent algorithm by obtaining an improvement of F1-score of 60% (on average of the considered datasets).</description><subject>Activities of daily living</subject><subject>Activity prediction</subject><subject>Algorithms</subject><subject>Ambient assisted living</subject><subject>Datasets</subject><subject>Marked temporal point processes</subject><subject>Neural networks</subject><subject>Smart buildings</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAyEQhonRxFr9DxjPW4H9ALw1jV9JEz3omQA7W2m2ywq00X8vzXrw6GnyDu87MzwIXVOyoIQ2t9uF9bsRerAwbBaMMJr7vG74CZpRwWWRRX2KZoRUdcElac7RRYxbknVDxQxtXgO0ziY3bLDO5eCSg4h9h1vt-m_c505-OjiNE-xGH3SPR--GhMfgLcQI8Q4vxyy0_chBPbQYvkYIbgdDyuYAcd-neInOOt1HuPqtc_T-cP-2eirWL4_Pq-W6sGUlUwGlqaRsRAfE6K62mnNGZCtM1wlrWN1yqi0RVENdMi6ZBKOJNUZQaa00opyjm2luvuhzDzGprd-HIa9UrGFl1VSEseySk8sGH2OATo35YB2-FSXqyFVt1R-u6shVTVxzdjVlIX_j4CCoaB0MNmMMYJNqvfvHlB8XyYoD</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Fortino, Giancarlo</creator><creator>Guzzo, Antonella</creator><creator>Ianni, Michele</creator><creator>Leotta, Francesco</creator><creator>Mecella, Massimo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9730-8882</orcidid><orcidid>https://orcid.org/0000-0003-3159-0536</orcidid><orcidid>https://orcid.org/0000-0003-0562-7462</orcidid></search><sort><creationdate>202112</creationdate><title>Predicting activities of daily living via temporal point processes: Approaches and experimental results</title><author>Fortino, Giancarlo ; Guzzo, Antonella ; Ianni, Michele ; Leotta, Francesco ; Mecella, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e3b49968fe0baf5ca77209d8bff8cb25d71ac081ae5327929eba0cbb819cc9b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activities of daily living</topic><topic>Activity prediction</topic><topic>Algorithms</topic><topic>Ambient assisted living</topic><topic>Datasets</topic><topic>Marked temporal point processes</topic><topic>Neural networks</topic><topic>Smart buildings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fortino, Giancarlo</creatorcontrib><creatorcontrib>Guzzo, Antonella</creatorcontrib><creatorcontrib>Ianni, Michele</creatorcontrib><creatorcontrib>Leotta, Francesco</creatorcontrib><creatorcontrib>Mecella, Massimo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fortino, Giancarlo</au><au>Guzzo, Antonella</au><au>Ianni, Michele</au><au>Leotta, Francesco</au><au>Mecella, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting activities of daily living via temporal point processes: Approaches and experimental results</atitle><jtitle>Computers & electrical engineering</jtitle><date>2021-12</date><risdate>2021</risdate><volume>96</volume><spage>107567</spage><pages>107567-</pages><artnum>107567</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>Activity Prediction is foreseeing the following activity people are going to execute. This is a crucial task in smart home environments, i.e., in order to facilitate the daily routines of elderly people with or without special needs. In this paper, we focused on Activity Daily Living prediction and we proposed a novel activity prediction technique based on the combination of Marked Temporal Point Processes and Neural Networks. Experiments on real and synthetic smart space datasets have shown that our approach is able to conveniently represent and predict daily living activities in an unsupervised way. We evaluated its performance and compared its results with state-of-the-art methods providing freely available implementations. Noticeably, the proposed approach outperforms the best concurrent algorithm by obtaining an improvement of F1-score of 60% (on average of the considered datasets).</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2021.107567</doi><orcidid>https://orcid.org/0000-0002-9730-8882</orcidid><orcidid>https://orcid.org/0000-0003-3159-0536</orcidid><orcidid>https://orcid.org/0000-0003-0562-7462</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7906 |
ispartof | Computers & electrical engineering, 2021-12, Vol.96, p.107567, Article 107567 |
issn | 0045-7906 1879-0755 |
language | eng |
recordid | cdi_proquest_journals_2623464022 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Activities of daily living Activity prediction Algorithms Ambient assisted living Datasets Marked temporal point processes Neural networks Smart buildings |
title | Predicting activities of daily living via temporal point processes: Approaches and experimental results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20activities%20of%20daily%20living%20via%20temporal%20point%20processes:%20Approaches%20and%20experimental%20results&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Fortino,%20Giancarlo&rft.date=2021-12&rft.volume=96&rft.spage=107567&rft.pages=107567-&rft.artnum=107567&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2021.107567&rft_dat=%3Cproquest_cross%3E2623464022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623464022&rft_id=info:pmid/&rft_els_id=S0045790621005073&rfr_iscdi=true |