Predicting activities of daily living via temporal point processes: Approaches and experimental results

Activity Prediction is foreseeing the following activity people are going to execute. This is a crucial task in smart home environments, i.e., in order to facilitate the daily routines of elderly people with or without special needs. In this paper, we focused on Activity Daily Living prediction and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering 2021-12, Vol.96, p.107567, Article 107567
Hauptverfasser: Fortino, Giancarlo, Guzzo, Antonella, Ianni, Michele, Leotta, Francesco, Mecella, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107567
container_title Computers & electrical engineering
container_volume 96
creator Fortino, Giancarlo
Guzzo, Antonella
Ianni, Michele
Leotta, Francesco
Mecella, Massimo
description Activity Prediction is foreseeing the following activity people are going to execute. This is a crucial task in smart home environments, i.e., in order to facilitate the daily routines of elderly people with or without special needs. In this paper, we focused on Activity Daily Living prediction and we proposed a novel activity prediction technique based on the combination of Marked Temporal Point Processes and Neural Networks. Experiments on real and synthetic smart space datasets have shown that our approach is able to conveniently represent and predict daily living activities in an unsupervised way. We evaluated its performance and compared its results with state-of-the-art methods providing freely available implementations. Noticeably, the proposed approach outperforms the best concurrent algorithm by obtaining an improvement of F1-score of 60% (on average of the considered datasets).
doi_str_mv 10.1016/j.compeleceng.2021.107567
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623464022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045790621005073</els_id><sourcerecordid>2623464022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e3b49968fe0baf5ca77209d8bff8cb25d71ac081ae5327929eba0cbb819cc9b83</originalsourceid><addsrcrecordid>eNqNkE1PAyEQhonRxFr9DxjPW4H9ALw1jV9JEz3omQA7W2m2ywq00X8vzXrw6GnyDu87MzwIXVOyoIQ2t9uF9bsRerAwbBaMMJr7vG74CZpRwWWRRX2KZoRUdcElac7RRYxbknVDxQxtXgO0ziY3bLDO5eCSg4h9h1vt-m_c505-OjiNE-xGH3SPR--GhMfgLcQI8Q4vxyy0_chBPbQYvkYIbgdDyuYAcd-neInOOt1HuPqtc_T-cP-2eirWL4_Pq-W6sGUlUwGlqaRsRAfE6K62mnNGZCtM1wlrWN1yqi0RVENdMi6ZBKOJNUZQaa00opyjm2luvuhzDzGprd-HIa9UrGFl1VSEseySk8sGH2OATo35YB2-FSXqyFVt1R-u6shVTVxzdjVlIX_j4CCoaB0MNmMMYJNqvfvHlB8XyYoD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623464022</pqid></control><display><type>article</type><title>Predicting activities of daily living via temporal point processes: Approaches and experimental results</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fortino, Giancarlo ; Guzzo, Antonella ; Ianni, Michele ; Leotta, Francesco ; Mecella, Massimo</creator><creatorcontrib>Fortino, Giancarlo ; Guzzo, Antonella ; Ianni, Michele ; Leotta, Francesco ; Mecella, Massimo</creatorcontrib><description>Activity Prediction is foreseeing the following activity people are going to execute. This is a crucial task in smart home environments, i.e., in order to facilitate the daily routines of elderly people with or without special needs. In this paper, we focused on Activity Daily Living prediction and we proposed a novel activity prediction technique based on the combination of Marked Temporal Point Processes and Neural Networks. Experiments on real and synthetic smart space datasets have shown that our approach is able to conveniently represent and predict daily living activities in an unsupervised way. We evaluated its performance and compared its results with state-of-the-art methods providing freely available implementations. Noticeably, the proposed approach outperforms the best concurrent algorithm by obtaining an improvement of F1-score of 60% (on average of the considered datasets).</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2021.107567</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Activities of daily living ; Activity prediction ; Algorithms ; Ambient assisted living ; Datasets ; Marked temporal point processes ; Neural networks ; Smart buildings</subject><ispartof>Computers &amp; electrical engineering, 2021-12, Vol.96, p.107567, Article 107567</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e3b49968fe0baf5ca77209d8bff8cb25d71ac081ae5327929eba0cbb819cc9b83</citedby><cites>FETCH-LOGICAL-c349t-e3b49968fe0baf5ca77209d8bff8cb25d71ac081ae5327929eba0cbb819cc9b83</cites><orcidid>0000-0002-9730-8882 ; 0000-0003-3159-0536 ; 0000-0003-0562-7462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compeleceng.2021.107567$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Fortino, Giancarlo</creatorcontrib><creatorcontrib>Guzzo, Antonella</creatorcontrib><creatorcontrib>Ianni, Michele</creatorcontrib><creatorcontrib>Leotta, Francesco</creatorcontrib><creatorcontrib>Mecella, Massimo</creatorcontrib><title>Predicting activities of daily living via temporal point processes: Approaches and experimental results</title><title>Computers &amp; electrical engineering</title><description>Activity Prediction is foreseeing the following activity people are going to execute. This is a crucial task in smart home environments, i.e., in order to facilitate the daily routines of elderly people with or without special needs. In this paper, we focused on Activity Daily Living prediction and we proposed a novel activity prediction technique based on the combination of Marked Temporal Point Processes and Neural Networks. Experiments on real and synthetic smart space datasets have shown that our approach is able to conveniently represent and predict daily living activities in an unsupervised way. We evaluated its performance and compared its results with state-of-the-art methods providing freely available implementations. Noticeably, the proposed approach outperforms the best concurrent algorithm by obtaining an improvement of F1-score of 60% (on average of the considered datasets).</description><subject>Activities of daily living</subject><subject>Activity prediction</subject><subject>Algorithms</subject><subject>Ambient assisted living</subject><subject>Datasets</subject><subject>Marked temporal point processes</subject><subject>Neural networks</subject><subject>Smart buildings</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAyEQhonRxFr9DxjPW4H9ALw1jV9JEz3omQA7W2m2ywq00X8vzXrw6GnyDu87MzwIXVOyoIQ2t9uF9bsRerAwbBaMMJr7vG74CZpRwWWRRX2KZoRUdcElac7RRYxbknVDxQxtXgO0ziY3bLDO5eCSg4h9h1vt-m_c505-OjiNE-xGH3SPR--GhMfgLcQI8Q4vxyy0_chBPbQYvkYIbgdDyuYAcd-neInOOt1HuPqtc_T-cP-2eirWL4_Pq-W6sGUlUwGlqaRsRAfE6K62mnNGZCtM1wlrWN1yqi0RVENdMi6ZBKOJNUZQaa00opyjm2luvuhzDzGprd-HIa9UrGFl1VSEseySk8sGH2OATo35YB2-FSXqyFVt1R-u6shVTVxzdjVlIX_j4CCoaB0MNmMMYJNqvfvHlB8XyYoD</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Fortino, Giancarlo</creator><creator>Guzzo, Antonella</creator><creator>Ianni, Michele</creator><creator>Leotta, Francesco</creator><creator>Mecella, Massimo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9730-8882</orcidid><orcidid>https://orcid.org/0000-0003-3159-0536</orcidid><orcidid>https://orcid.org/0000-0003-0562-7462</orcidid></search><sort><creationdate>202112</creationdate><title>Predicting activities of daily living via temporal point processes: Approaches and experimental results</title><author>Fortino, Giancarlo ; Guzzo, Antonella ; Ianni, Michele ; Leotta, Francesco ; Mecella, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e3b49968fe0baf5ca77209d8bff8cb25d71ac081ae5327929eba0cbb819cc9b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activities of daily living</topic><topic>Activity prediction</topic><topic>Algorithms</topic><topic>Ambient assisted living</topic><topic>Datasets</topic><topic>Marked temporal point processes</topic><topic>Neural networks</topic><topic>Smart buildings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fortino, Giancarlo</creatorcontrib><creatorcontrib>Guzzo, Antonella</creatorcontrib><creatorcontrib>Ianni, Michele</creatorcontrib><creatorcontrib>Leotta, Francesco</creatorcontrib><creatorcontrib>Mecella, Massimo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fortino, Giancarlo</au><au>Guzzo, Antonella</au><au>Ianni, Michele</au><au>Leotta, Francesco</au><au>Mecella, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting activities of daily living via temporal point processes: Approaches and experimental results</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2021-12</date><risdate>2021</risdate><volume>96</volume><spage>107567</spage><pages>107567-</pages><artnum>107567</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>Activity Prediction is foreseeing the following activity people are going to execute. This is a crucial task in smart home environments, i.e., in order to facilitate the daily routines of elderly people with or without special needs. In this paper, we focused on Activity Daily Living prediction and we proposed a novel activity prediction technique based on the combination of Marked Temporal Point Processes and Neural Networks. Experiments on real and synthetic smart space datasets have shown that our approach is able to conveniently represent and predict daily living activities in an unsupervised way. We evaluated its performance and compared its results with state-of-the-art methods providing freely available implementations. Noticeably, the proposed approach outperforms the best concurrent algorithm by obtaining an improvement of F1-score of 60% (on average of the considered datasets).</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2021.107567</doi><orcidid>https://orcid.org/0000-0002-9730-8882</orcidid><orcidid>https://orcid.org/0000-0003-3159-0536</orcidid><orcidid>https://orcid.org/0000-0003-0562-7462</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2021-12, Vol.96, p.107567, Article 107567
issn 0045-7906
1879-0755
language eng
recordid cdi_proquest_journals_2623464022
source ScienceDirect Journals (5 years ago - present)
subjects Activities of daily living
Activity prediction
Algorithms
Ambient assisted living
Datasets
Marked temporal point processes
Neural networks
Smart buildings
title Predicting activities of daily living via temporal point processes: Approaches and experimental results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20activities%20of%20daily%20living%20via%20temporal%20point%20processes:%20Approaches%20and%20experimental%20results&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Fortino,%20Giancarlo&rft.date=2021-12&rft.volume=96&rft.spage=107567&rft.pages=107567-&rft.artnum=107567&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2021.107567&rft_dat=%3Cproquest_cross%3E2623464022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623464022&rft_id=info:pmid/&rft_els_id=S0045790621005073&rfr_iscdi=true