Effect of microstructure on hydrogen embrittlement susceptibility in quenching-partitioning-tempering steel

Hydrogen embrittlement (HE) restricts the application of high strength steel in sustainable energy productions. As one type of efficient hydrogen trap sites, the NbC carbide precipitation is a superior approach to mitigate the HE susceptibility. The microstructure, mechanical properties and HE susce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-01, Vol.831, p.142046, Article 142046
Hauptverfasser: Xu, Pingda, Li, Chongyang, Li, Wei, Zhu, Maoyuan, Zhang, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen embrittlement (HE) restricts the application of high strength steel in sustainable energy productions. As one type of efficient hydrogen trap sites, the NbC carbide precipitation is a superior approach to mitigate the HE susceptibility. The microstructure, mechanical properties and HE susceptibility were investigated in different high strength steels treated by quenching and partitioning (Q&P), quenching-partitioning-tempering (Q-P-T) and intercritical annealing quenching and partitioning (IAQP) processes in this study. The results show that the NbC particles can significantly improve the HE resistance of high strength steel treated by Q-P-T process. The NbC carbide precipitation has four different morphologies with varied sizes, which can effectively trap a large amount of diffusible hydrogen atoms. The retained austenite phases with different morphologies and locations have different hydrogen trap ability, but ferrite phase does not show strong hydrogen trap ability. Meanwhile, the NbC carbide precipitation can enhance the yield strength of steel effectively through precipitation strengthening, but has little effect on its ductility.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2021.142046