Hopfield-type neural ordinary differential equation for robust machine learning

•We propose a neural ODE inspired by Hopfield-type neural networks.•We prove the stability of both transient/steady state output of the proposed ODE.•We provide a method for stabilizing the output of the proposed ODE layer.•We show experimentally that the proposed layer improves adversarial robustne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2021-12, Vol.152, p.180-187
Hauptverfasser: Shin, Yu-Hyun, Baek, Seung Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue
container_start_page 180
container_title Pattern recognition letters
container_volume 152
creator Shin, Yu-Hyun
Baek, Seung Jun
description •We propose a neural ODE inspired by Hopfield-type neural networks.•We prove the stability of both transient/steady state output of the proposed ODE.•We provide a method for stabilizing the output of the proposed ODE layer.•We show experimentally that the proposed layer improves adversarial robustness. Neural networks are vulnerable to adversarial input perturbations imperceptible to human, which calls for robust machine learning for safety-critical applications. In this paper, we propose a new neural ODE layer which is inspired by Hopfield-type neural networks. We prove that the proposed ODE layer has global asymptotic stability on the projected space, which implies the existence and uniqueness of its steady state. We further show that the proposed layer satisfies the local stability condition such that the output is Lipschitz continuous in the ODE layer input, guaranteeing that the norm of perturbation on the hidden state does not grow over time. By experiments we show that an appropriate level of stability constraints imposed on the proposed ODE layer can improve the adversarial robustness of ODE layers, and present a heuristic method for finding good hyperparameters for stability constraints.
doi_str_mv 10.1016/j.patrec.2021.10.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623452617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865521003664</els_id><sourcerecordid>2623452617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-29651690b430d32b5b7cbb37e6878ef619b794e425a605f2a21d4617a75744423</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-Aw8Fz635n_YiyKKusLAXPYe0fdGUbtJNW2G_vVnq2dOD4TfzmEHonuCCYCIfu2IwU4SmoJiSJBUYlxdoRUpFc8U4v0SrhKm8lEJco5tx7DDGklXlCu23YbAO-jafTgNkHuZo-izE1nkTT1nrrIUIfnJJheNsJhd8ZkPMYqjnccoOpvl2HrIeTPTOf92iK2v6Ee7-7hp9vr58bLb5bv_2vnne5Q1jfMppJQWRFa45wy2jtahVU9dMgSxVCVaSqlYVB06FkVhYaihpuSTKKKE455St0cOSO8RwnGGcdBfm6NNLTSVlXNBEJ4ovVBPDOEaweojukIppgvV5Ot3pZTp9nu6spumS7WmxQWrw4yDqsXHgG2hdQifdBvd_wC-ROXjB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623452617</pqid></control><display><type>article</type><title>Hopfield-type neural ordinary differential equation for robust machine learning</title><source>Elsevier ScienceDirect Journals</source><creator>Shin, Yu-Hyun ; Baek, Seung Jun</creator><creatorcontrib>Shin, Yu-Hyun ; Baek, Seung Jun</creatorcontrib><description>•We propose a neural ODE inspired by Hopfield-type neural networks.•We prove the stability of both transient/steady state output of the proposed ODE.•We provide a method for stabilizing the output of the proposed ODE layer.•We show experimentally that the proposed layer improves adversarial robustness. Neural networks are vulnerable to adversarial input perturbations imperceptible to human, which calls for robust machine learning for safety-critical applications. In this paper, we propose a new neural ODE layer which is inspired by Hopfield-type neural networks. We prove that the proposed ODE layer has global asymptotic stability on the projected space, which implies the existence and uniqueness of its steady state. We further show that the proposed layer satisfies the local stability condition such that the output is Lipschitz continuous in the ODE layer input, guaranteeing that the norm of perturbation on the hidden state does not grow over time. By experiments we show that an appropriate level of stability constraints imposed on the proposed ODE layer can improve the adversarial robustness of ODE layers, and present a heuristic method for finding good hyperparameters for stability constraints.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2021.10.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adversarial defense ; Differential equations ; Heuristic methods ; Hopfield-type network ; Image classification ; Learning algorithms ; Machine learning ; Neural networks ; Neural ODE ; Ordinary differential equations ; Perturbation ; Robustness ; Safety critical ; Stability</subject><ispartof>Pattern recognition letters, 2021-12, Vol.152, p.180-187</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-29651690b430d32b5b7cbb37e6878ef619b794e425a605f2a21d4617a75744423</citedby><cites>FETCH-LOGICAL-c334t-29651690b430d32b5b7cbb37e6878ef619b794e425a605f2a21d4617a75744423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167865521003664$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shin, Yu-Hyun</creatorcontrib><creatorcontrib>Baek, Seung Jun</creatorcontrib><title>Hopfield-type neural ordinary differential equation for robust machine learning</title><title>Pattern recognition letters</title><description>•We propose a neural ODE inspired by Hopfield-type neural networks.•We prove the stability of both transient/steady state output of the proposed ODE.•We provide a method for stabilizing the output of the proposed ODE layer.•We show experimentally that the proposed layer improves adversarial robustness. Neural networks are vulnerable to adversarial input perturbations imperceptible to human, which calls for robust machine learning for safety-critical applications. In this paper, we propose a new neural ODE layer which is inspired by Hopfield-type neural networks. We prove that the proposed ODE layer has global asymptotic stability on the projected space, which implies the existence and uniqueness of its steady state. We further show that the proposed layer satisfies the local stability condition such that the output is Lipschitz continuous in the ODE layer input, guaranteeing that the norm of perturbation on the hidden state does not grow over time. By experiments we show that an appropriate level of stability constraints imposed on the proposed ODE layer can improve the adversarial robustness of ODE layers, and present a heuristic method for finding good hyperparameters for stability constraints.</description><subject>Adversarial defense</subject><subject>Differential equations</subject><subject>Heuristic methods</subject><subject>Hopfield-type network</subject><subject>Image classification</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neural ODE</subject><subject>Ordinary differential equations</subject><subject>Perturbation</subject><subject>Robustness</subject><subject>Safety critical</subject><subject>Stability</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-Aw8Fz635n_YiyKKusLAXPYe0fdGUbtJNW2G_vVnq2dOD4TfzmEHonuCCYCIfu2IwU4SmoJiSJBUYlxdoRUpFc8U4v0SrhKm8lEJco5tx7DDGklXlCu23YbAO-jafTgNkHuZo-izE1nkTT1nrrIUIfnJJheNsJhd8ZkPMYqjnccoOpvl2HrIeTPTOf92iK2v6Ee7-7hp9vr58bLb5bv_2vnne5Q1jfMppJQWRFa45wy2jtahVU9dMgSxVCVaSqlYVB06FkVhYaihpuSTKKKE455St0cOSO8RwnGGcdBfm6NNLTSVlXNBEJ4ovVBPDOEaweojukIppgvV5Ot3pZTp9nu6spumS7WmxQWrw4yDqsXHgG2hdQifdBvd_wC-ROXjB</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Shin, Yu-Hyun</creator><creator>Baek, Seung Jun</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202112</creationdate><title>Hopfield-type neural ordinary differential equation for robust machine learning</title><author>Shin, Yu-Hyun ; Baek, Seung Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-29651690b430d32b5b7cbb37e6878ef619b794e425a605f2a21d4617a75744423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adversarial defense</topic><topic>Differential equations</topic><topic>Heuristic methods</topic><topic>Hopfield-type network</topic><topic>Image classification</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neural ODE</topic><topic>Ordinary differential equations</topic><topic>Perturbation</topic><topic>Robustness</topic><topic>Safety critical</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Yu-Hyun</creatorcontrib><creatorcontrib>Baek, Seung Jun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Yu-Hyun</au><au>Baek, Seung Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hopfield-type neural ordinary differential equation for robust machine learning</atitle><jtitle>Pattern recognition letters</jtitle><date>2021-12</date><risdate>2021</risdate><volume>152</volume><spage>180</spage><epage>187</epage><pages>180-187</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•We propose a neural ODE inspired by Hopfield-type neural networks.•We prove the stability of both transient/steady state output of the proposed ODE.•We provide a method for stabilizing the output of the proposed ODE layer.•We show experimentally that the proposed layer improves adversarial robustness. Neural networks are vulnerable to adversarial input perturbations imperceptible to human, which calls for robust machine learning for safety-critical applications. In this paper, we propose a new neural ODE layer which is inspired by Hopfield-type neural networks. We prove that the proposed ODE layer has global asymptotic stability on the projected space, which implies the existence and uniqueness of its steady state. We further show that the proposed layer satisfies the local stability condition such that the output is Lipschitz continuous in the ODE layer input, guaranteeing that the norm of perturbation on the hidden state does not grow over time. By experiments we show that an appropriate level of stability constraints imposed on the proposed ODE layer can improve the adversarial robustness of ODE layers, and present a heuristic method for finding good hyperparameters for stability constraints.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2021.10.008</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2021-12, Vol.152, p.180-187
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_journals_2623452617
source Elsevier ScienceDirect Journals
subjects Adversarial defense
Differential equations
Heuristic methods
Hopfield-type network
Image classification
Learning algorithms
Machine learning
Neural networks
Neural ODE
Ordinary differential equations
Perturbation
Robustness
Safety critical
Stability
title Hopfield-type neural ordinary differential equation for robust machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hopfield-type%20neural%20ordinary%20differential%20equation%20for%20robust%20machine%20learning&rft.jtitle=Pattern%20recognition%20letters&rft.au=Shin,%20Yu-Hyun&rft.date=2021-12&rft.volume=152&rft.spage=180&rft.epage=187&rft.pages=180-187&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2021.10.008&rft_dat=%3Cproquest_cross%3E2623452617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623452617&rft_id=info:pmid/&rft_els_id=S0167865521003664&rfr_iscdi=true