Hopfield-type neural ordinary differential equation for robust machine learning
•We propose a neural ODE inspired by Hopfield-type neural networks.•We prove the stability of both transient/steady state output of the proposed ODE.•We provide a method for stabilizing the output of the proposed ODE layer.•We show experimentally that the proposed layer improves adversarial robustne...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2021-12, Vol.152, p.180-187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | |
container_start_page | 180 |
container_title | Pattern recognition letters |
container_volume | 152 |
creator | Shin, Yu-Hyun Baek, Seung Jun |
description | •We propose a neural ODE inspired by Hopfield-type neural networks.•We prove the stability of both transient/steady state output of the proposed ODE.•We provide a method for stabilizing the output of the proposed ODE layer.•We show experimentally that the proposed layer improves adversarial robustness.
Neural networks are vulnerable to adversarial input perturbations imperceptible to human, which calls for robust machine learning for safety-critical applications. In this paper, we propose a new neural ODE layer which is inspired by Hopfield-type neural networks. We prove that the proposed ODE layer has global asymptotic stability on the projected space, which implies the existence and uniqueness of its steady state. We further show that the proposed layer satisfies the local stability condition such that the output is Lipschitz continuous in the ODE layer input, guaranteeing that the norm of perturbation on the hidden state does not grow over time. By experiments we show that an appropriate level of stability constraints imposed on the proposed ODE layer can improve the adversarial robustness of ODE layers, and present a heuristic method for finding good hyperparameters for stability constraints. |
doi_str_mv | 10.1016/j.patrec.2021.10.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623452617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865521003664</els_id><sourcerecordid>2623452617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-29651690b430d32b5b7cbb37e6878ef619b794e425a605f2a21d4617a75744423</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-Aw8Fz635n_YiyKKusLAXPYe0fdGUbtJNW2G_vVnq2dOD4TfzmEHonuCCYCIfu2IwU4SmoJiSJBUYlxdoRUpFc8U4v0SrhKm8lEJco5tx7DDGklXlCu23YbAO-jafTgNkHuZo-izE1nkTT1nrrIUIfnJJheNsJhd8ZkPMYqjnccoOpvl2HrIeTPTOf92iK2v6Ee7-7hp9vr58bLb5bv_2vnne5Q1jfMppJQWRFa45wy2jtahVU9dMgSxVCVaSqlYVB06FkVhYaihpuSTKKKE455St0cOSO8RwnGGcdBfm6NNLTSVlXNBEJ4ovVBPDOEaweojukIppgvV5Ot3pZTp9nu6spumS7WmxQWrw4yDqsXHgG2hdQifdBvd_wC-ROXjB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623452617</pqid></control><display><type>article</type><title>Hopfield-type neural ordinary differential equation for robust machine learning</title><source>Elsevier ScienceDirect Journals</source><creator>Shin, Yu-Hyun ; Baek, Seung Jun</creator><creatorcontrib>Shin, Yu-Hyun ; Baek, Seung Jun</creatorcontrib><description>•We propose a neural ODE inspired by Hopfield-type neural networks.•We prove the stability of both transient/steady state output of the proposed ODE.•We provide a method for stabilizing the output of the proposed ODE layer.•We show experimentally that the proposed layer improves adversarial robustness.
Neural networks are vulnerable to adversarial input perturbations imperceptible to human, which calls for robust machine learning for safety-critical applications. In this paper, we propose a new neural ODE layer which is inspired by Hopfield-type neural networks. We prove that the proposed ODE layer has global asymptotic stability on the projected space, which implies the existence and uniqueness of its steady state. We further show that the proposed layer satisfies the local stability condition such that the output is Lipschitz continuous in the ODE layer input, guaranteeing that the norm of perturbation on the hidden state does not grow over time. By experiments we show that an appropriate level of stability constraints imposed on the proposed ODE layer can improve the adversarial robustness of ODE layers, and present a heuristic method for finding good hyperparameters for stability constraints.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2021.10.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adversarial defense ; Differential equations ; Heuristic methods ; Hopfield-type network ; Image classification ; Learning algorithms ; Machine learning ; Neural networks ; Neural ODE ; Ordinary differential equations ; Perturbation ; Robustness ; Safety critical ; Stability</subject><ispartof>Pattern recognition letters, 2021-12, Vol.152, p.180-187</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-29651690b430d32b5b7cbb37e6878ef619b794e425a605f2a21d4617a75744423</citedby><cites>FETCH-LOGICAL-c334t-29651690b430d32b5b7cbb37e6878ef619b794e425a605f2a21d4617a75744423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167865521003664$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shin, Yu-Hyun</creatorcontrib><creatorcontrib>Baek, Seung Jun</creatorcontrib><title>Hopfield-type neural ordinary differential equation for robust machine learning</title><title>Pattern recognition letters</title><description>•We propose a neural ODE inspired by Hopfield-type neural networks.•We prove the stability of both transient/steady state output of the proposed ODE.•We provide a method for stabilizing the output of the proposed ODE layer.•We show experimentally that the proposed layer improves adversarial robustness.
Neural networks are vulnerable to adversarial input perturbations imperceptible to human, which calls for robust machine learning for safety-critical applications. In this paper, we propose a new neural ODE layer which is inspired by Hopfield-type neural networks. We prove that the proposed ODE layer has global asymptotic stability on the projected space, which implies the existence and uniqueness of its steady state. We further show that the proposed layer satisfies the local stability condition such that the output is Lipschitz continuous in the ODE layer input, guaranteeing that the norm of perturbation on the hidden state does not grow over time. By experiments we show that an appropriate level of stability constraints imposed on the proposed ODE layer can improve the adversarial robustness of ODE layers, and present a heuristic method for finding good hyperparameters for stability constraints.</description><subject>Adversarial defense</subject><subject>Differential equations</subject><subject>Heuristic methods</subject><subject>Hopfield-type network</subject><subject>Image classification</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neural ODE</subject><subject>Ordinary differential equations</subject><subject>Perturbation</subject><subject>Robustness</subject><subject>Safety critical</subject><subject>Stability</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-Aw8Fz635n_YiyKKusLAXPYe0fdGUbtJNW2G_vVnq2dOD4TfzmEHonuCCYCIfu2IwU4SmoJiSJBUYlxdoRUpFc8U4v0SrhKm8lEJco5tx7DDGklXlCu23YbAO-jafTgNkHuZo-izE1nkTT1nrrIUIfnJJheNsJhd8ZkPMYqjnccoOpvl2HrIeTPTOf92iK2v6Ee7-7hp9vr58bLb5bv_2vnne5Q1jfMppJQWRFa45wy2jtahVU9dMgSxVCVaSqlYVB06FkVhYaihpuSTKKKE455St0cOSO8RwnGGcdBfm6NNLTSVlXNBEJ4ovVBPDOEaweojukIppgvV5Ot3pZTp9nu6spumS7WmxQWrw4yDqsXHgG2hdQifdBvd_wC-ROXjB</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Shin, Yu-Hyun</creator><creator>Baek, Seung Jun</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202112</creationdate><title>Hopfield-type neural ordinary differential equation for robust machine learning</title><author>Shin, Yu-Hyun ; Baek, Seung Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-29651690b430d32b5b7cbb37e6878ef619b794e425a605f2a21d4617a75744423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adversarial defense</topic><topic>Differential equations</topic><topic>Heuristic methods</topic><topic>Hopfield-type network</topic><topic>Image classification</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neural ODE</topic><topic>Ordinary differential equations</topic><topic>Perturbation</topic><topic>Robustness</topic><topic>Safety critical</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Yu-Hyun</creatorcontrib><creatorcontrib>Baek, Seung Jun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Yu-Hyun</au><au>Baek, Seung Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hopfield-type neural ordinary differential equation for robust machine learning</atitle><jtitle>Pattern recognition letters</jtitle><date>2021-12</date><risdate>2021</risdate><volume>152</volume><spage>180</spage><epage>187</epage><pages>180-187</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•We propose a neural ODE inspired by Hopfield-type neural networks.•We prove the stability of both transient/steady state output of the proposed ODE.•We provide a method for stabilizing the output of the proposed ODE layer.•We show experimentally that the proposed layer improves adversarial robustness.
Neural networks are vulnerable to adversarial input perturbations imperceptible to human, which calls for robust machine learning for safety-critical applications. In this paper, we propose a new neural ODE layer which is inspired by Hopfield-type neural networks. We prove that the proposed ODE layer has global asymptotic stability on the projected space, which implies the existence and uniqueness of its steady state. We further show that the proposed layer satisfies the local stability condition such that the output is Lipschitz continuous in the ODE layer input, guaranteeing that the norm of perturbation on the hidden state does not grow over time. By experiments we show that an appropriate level of stability constraints imposed on the proposed ODE layer can improve the adversarial robustness of ODE layers, and present a heuristic method for finding good hyperparameters for stability constraints.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2021.10.008</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2021-12, Vol.152, p.180-187 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_proquest_journals_2623452617 |
source | Elsevier ScienceDirect Journals |
subjects | Adversarial defense Differential equations Heuristic methods Hopfield-type network Image classification Learning algorithms Machine learning Neural networks Neural ODE Ordinary differential equations Perturbation Robustness Safety critical Stability |
title | Hopfield-type neural ordinary differential equation for robust machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hopfield-type%20neural%20ordinary%20differential%20equation%20for%20robust%20machine%20learning&rft.jtitle=Pattern%20recognition%20letters&rft.au=Shin,%20Yu-Hyun&rft.date=2021-12&rft.volume=152&rft.spage=180&rft.epage=187&rft.pages=180-187&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2021.10.008&rft_dat=%3Cproquest_cross%3E2623452617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623452617&rft_id=info:pmid/&rft_els_id=S0167865521003664&rfr_iscdi=true |