Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity

Although residual stress (RS) and crack closure (CC) are generally accepted as predominant factors affecting post-overload fatigue crack growth (FCG), they cannot explain many peculiarities of FCG variation. Understanding overload mechanisms is essential to life prediction in variable amplitude fati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-01, Vol.831, p.142268, Article 142268
Hauptverfasser: Zhang, Chunguo, Lu, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 142268
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 831
creator Zhang, Chunguo
Lu, Weidong
description Although residual stress (RS) and crack closure (CC) are generally accepted as predominant factors affecting post-overload fatigue crack growth (FCG), they cannot explain many peculiarities of FCG variation. Understanding overload mechanisms is essential to life prediction in variable amplitude fatigue load. In this study, the RS contribution behind and ahead of a crack tip and its relation to CC and stress intensity of fatigue cycling is clarified through combination of different stress ratios, heat treatment, overloads, and removals of crack wake and crack-tip plastic zone. Results indicate that overload-induced RS contribution is a single decisive factor for post-overload FCG rate without initial acceleration, and exhibits CC dependence behind crack tip and applied stress-intensity dependence ahead of crack tip. [Display omitted] •OL-induced RS contribution to fatigue retardation shows CC and Kmin dependence.•CC without carrying RS has no influence on fatigue retardation, and vice versa.•RS ahead of crack tip contributes to fatigue retardation only under KRS + Kmin < 0.
doi_str_mv 10.1016/j.msea.2021.142268
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623452521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092150932101532X</els_id><sourcerecordid>2623452521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-249dcd260fdfb248ea26eb95457372f0e1140b6294b5eea5d3a050182497e8683</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgempyZjKdATdSvEHBjV2HTHKmpE6TmmQKXfrmpla3rnIg_3cuHyE3nE054_XderqJqKbAgE95BVA3J2TCm1lZVG1Zn5IJa4EXgrXlObmIcc0Y4xUTE_K1dDu0g3Urqr1LwXZjst5R31O_wzB4ZQrrzKjR0IDRmlENNKZcRpo87VWyqxHzV1LBqB90iyFZhy4dAjoo_UH14OMYkCpn_mDrErpo0_6KnPVqiHj9-16S5dPj-_ylWLw9v84fFoUuoUkFVK3RBmrWm76DqkEFNXatqMSsnEHPkOeDuhraqhOISphSMcF4k7kZNnVTXpLbY99t8J8jxiTXfgwuj5RQQ1kJEMBzCo4pHXyMAXu5DXajwl5yJg-q5VoeVMuDanlUnaH7I4R5_53FIKO26LIzG1Anabz9D_8GElaKNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623452521</pqid></control><display><type>article</type><title>Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Chunguo ; Lu, Weidong</creator><creatorcontrib>Zhang, Chunguo ; Lu, Weidong</creatorcontrib><description>Although residual stress (RS) and crack closure (CC) are generally accepted as predominant factors affecting post-overload fatigue crack growth (FCG), they cannot explain many peculiarities of FCG variation. Understanding overload mechanisms is essential to life prediction in variable amplitude fatigue load. In this study, the RS contribution behind and ahead of a crack tip and its relation to CC and stress intensity of fatigue cycling is clarified through combination of different stress ratios, heat treatment, overloads, and removals of crack wake and crack-tip plastic zone. Results indicate that overload-induced RS contribution is a single decisive factor for post-overload FCG rate without initial acceleration, and exhibits CC dependence behind crack tip and applied stress-intensity dependence ahead of crack tip. [Display omitted] •OL-induced RS contribution to fatigue retardation shows CC and Kmin dependence.•CC without carrying RS has no influence on fatigue retardation, and vice versa.•RS ahead of crack tip contributes to fatigue retardation only under KRS + Kmin &lt; 0.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.142268</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Crack closure ; Crack propagation ; Crack tips ; Fatigue crack growth ; Fatigue failure ; Fracture mechanics ; Heat treatment ; Life prediction ; Overload ; Overloading ; Plastic zones ; Residual stress ; Stress intensity</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.831, p.142268, Article 142268</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 13, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-249dcd260fdfb248ea26eb95457372f0e1140b6294b5eea5d3a050182497e8683</citedby><cites>FETCH-LOGICAL-c328t-249dcd260fdfb248ea26eb95457372f0e1140b6294b5eea5d3a050182497e8683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092150932101532X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Chunguo</creatorcontrib><creatorcontrib>Lu, Weidong</creatorcontrib><title>Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Although residual stress (RS) and crack closure (CC) are generally accepted as predominant factors affecting post-overload fatigue crack growth (FCG), they cannot explain many peculiarities of FCG variation. Understanding overload mechanisms is essential to life prediction in variable amplitude fatigue load. In this study, the RS contribution behind and ahead of a crack tip and its relation to CC and stress intensity of fatigue cycling is clarified through combination of different stress ratios, heat treatment, overloads, and removals of crack wake and crack-tip plastic zone. Results indicate that overload-induced RS contribution is a single decisive factor for post-overload FCG rate without initial acceleration, and exhibits CC dependence behind crack tip and applied stress-intensity dependence ahead of crack tip. [Display omitted] •OL-induced RS contribution to fatigue retardation shows CC and Kmin dependence.•CC without carrying RS has no influence on fatigue retardation, and vice versa.•RS ahead of crack tip contributes to fatigue retardation only under KRS + Kmin &lt; 0.</description><subject>Crack closure</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Fatigue crack growth</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Heat treatment</subject><subject>Life prediction</subject><subject>Overload</subject><subject>Overloading</subject><subject>Plastic zones</subject><subject>Residual stress</subject><subject>Stress intensity</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4CrgempyZjKdATdSvEHBjV2HTHKmpE6TmmQKXfrmpla3rnIg_3cuHyE3nE054_XderqJqKbAgE95BVA3J2TCm1lZVG1Zn5IJa4EXgrXlObmIcc0Y4xUTE_K1dDu0g3Urqr1LwXZjst5R31O_wzB4ZQrrzKjR0IDRmlENNKZcRpo87VWyqxHzV1LBqB90iyFZhy4dAjoo_UH14OMYkCpn_mDrErpo0_6KnPVqiHj9-16S5dPj-_ylWLw9v84fFoUuoUkFVK3RBmrWm76DqkEFNXatqMSsnEHPkOeDuhraqhOISphSMcF4k7kZNnVTXpLbY99t8J8jxiTXfgwuj5RQQ1kJEMBzCo4pHXyMAXu5DXajwl5yJg-q5VoeVMuDanlUnaH7I4R5_53FIKO26LIzG1Anabz9D_8GElaKNQ</recordid><startdate>20220113</startdate><enddate>20220113</enddate><creator>Zhang, Chunguo</creator><creator>Lu, Weidong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220113</creationdate><title>Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity</title><author>Zhang, Chunguo ; Lu, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-249dcd260fdfb248ea26eb95457372f0e1140b6294b5eea5d3a050182497e8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Crack closure</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Fatigue crack growth</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Heat treatment</topic><topic>Life prediction</topic><topic>Overload</topic><topic>Overloading</topic><topic>Plastic zones</topic><topic>Residual stress</topic><topic>Stress intensity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunguo</creatorcontrib><creatorcontrib>Lu, Weidong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chunguo</au><au>Lu, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2022-01-13</date><risdate>2022</risdate><volume>831</volume><spage>142268</spage><pages>142268-</pages><artnum>142268</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Although residual stress (RS) and crack closure (CC) are generally accepted as predominant factors affecting post-overload fatigue crack growth (FCG), they cannot explain many peculiarities of FCG variation. Understanding overload mechanisms is essential to life prediction in variable amplitude fatigue load. In this study, the RS contribution behind and ahead of a crack tip and its relation to CC and stress intensity of fatigue cycling is clarified through combination of different stress ratios, heat treatment, overloads, and removals of crack wake and crack-tip plastic zone. Results indicate that overload-induced RS contribution is a single decisive factor for post-overload FCG rate without initial acceleration, and exhibits CC dependence behind crack tip and applied stress-intensity dependence ahead of crack tip. [Display omitted] •OL-induced RS contribution to fatigue retardation shows CC and Kmin dependence.•CC without carrying RS has no influence on fatigue retardation, and vice versa.•RS ahead of crack tip contributes to fatigue retardation only under KRS + Kmin &lt; 0.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.142268</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.831, p.142268, Article 142268
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2623452521
source Elsevier ScienceDirect Journals
subjects Crack closure
Crack propagation
Crack tips
Fatigue crack growth
Fatigue failure
Fracture mechanics
Heat treatment
Life prediction
Overload
Overloading
Plastic zones
Residual stress
Stress intensity
title Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20contribution%20of%20overload-induced%20residual%20stress%20to%20fatigue%20retardation%20pertinent%20to%20crack%20closure%20and%20stress%20intensity&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Zhang,%20Chunguo&rft.date=2022-01-13&rft.volume=831&rft.spage=142268&rft.pages=142268-&rft.artnum=142268&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.142268&rft_dat=%3Cproquest_cross%3E2623452521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623452521&rft_id=info:pmid/&rft_els_id=S092150932101532X&rfr_iscdi=true