Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity
Although residual stress (RS) and crack closure (CC) are generally accepted as predominant factors affecting post-overload fatigue crack growth (FCG), they cannot explain many peculiarities of FCG variation. Understanding overload mechanisms is essential to life prediction in variable amplitude fati...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-01, Vol.831, p.142268, Article 142268 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 142268 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 831 |
creator | Zhang, Chunguo Lu, Weidong |
description | Although residual stress (RS) and crack closure (CC) are generally accepted as predominant factors affecting post-overload fatigue crack growth (FCG), they cannot explain many peculiarities of FCG variation. Understanding overload mechanisms is essential to life prediction in variable amplitude fatigue load. In this study, the RS contribution behind and ahead of a crack tip and its relation to CC and stress intensity of fatigue cycling is clarified through combination of different stress ratios, heat treatment, overloads, and removals of crack wake and crack-tip plastic zone. Results indicate that overload-induced RS contribution is a single decisive factor for post-overload FCG rate without initial acceleration, and exhibits CC dependence behind crack tip and applied stress-intensity dependence ahead of crack tip.
[Display omitted]
•OL-induced RS contribution to fatigue retardation shows CC and Kmin dependence.•CC without carrying RS has no influence on fatigue retardation, and vice versa.•RS ahead of crack tip contributes to fatigue retardation only under KRS + Kmin < 0. |
doi_str_mv | 10.1016/j.msea.2021.142268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623452521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092150932101532X</els_id><sourcerecordid>2623452521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-249dcd260fdfb248ea26eb95457372f0e1140b6294b5eea5d3a050182497e8683</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgempyZjKdATdSvEHBjV2HTHKmpE6TmmQKXfrmpla3rnIg_3cuHyE3nE054_XderqJqKbAgE95BVA3J2TCm1lZVG1Zn5IJa4EXgrXlObmIcc0Y4xUTE_K1dDu0g3Urqr1LwXZjst5R31O_wzB4ZQrrzKjR0IDRmlENNKZcRpo87VWyqxHzV1LBqB90iyFZhy4dAjoo_UH14OMYkCpn_mDrErpo0_6KnPVqiHj9-16S5dPj-_ylWLw9v84fFoUuoUkFVK3RBmrWm76DqkEFNXatqMSsnEHPkOeDuhraqhOISphSMcF4k7kZNnVTXpLbY99t8J8jxiTXfgwuj5RQQ1kJEMBzCo4pHXyMAXu5DXajwl5yJg-q5VoeVMuDanlUnaH7I4R5_53FIKO26LIzG1Anabz9D_8GElaKNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623452521</pqid></control><display><type>article</type><title>Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Chunguo ; Lu, Weidong</creator><creatorcontrib>Zhang, Chunguo ; Lu, Weidong</creatorcontrib><description>Although residual stress (RS) and crack closure (CC) are generally accepted as predominant factors affecting post-overload fatigue crack growth (FCG), they cannot explain many peculiarities of FCG variation. Understanding overload mechanisms is essential to life prediction in variable amplitude fatigue load. In this study, the RS contribution behind and ahead of a crack tip and its relation to CC and stress intensity of fatigue cycling is clarified through combination of different stress ratios, heat treatment, overloads, and removals of crack wake and crack-tip plastic zone. Results indicate that overload-induced RS contribution is a single decisive factor for post-overload FCG rate without initial acceleration, and exhibits CC dependence behind crack tip and applied stress-intensity dependence ahead of crack tip.
[Display omitted]
•OL-induced RS contribution to fatigue retardation shows CC and Kmin dependence.•CC without carrying RS has no influence on fatigue retardation, and vice versa.•RS ahead of crack tip contributes to fatigue retardation only under KRS + Kmin < 0.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.142268</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Crack closure ; Crack propagation ; Crack tips ; Fatigue crack growth ; Fatigue failure ; Fracture mechanics ; Heat treatment ; Life prediction ; Overload ; Overloading ; Plastic zones ; Residual stress ; Stress intensity</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.831, p.142268, Article 142268</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 13, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-249dcd260fdfb248ea26eb95457372f0e1140b6294b5eea5d3a050182497e8683</citedby><cites>FETCH-LOGICAL-c328t-249dcd260fdfb248ea26eb95457372f0e1140b6294b5eea5d3a050182497e8683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092150932101532X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Chunguo</creatorcontrib><creatorcontrib>Lu, Weidong</creatorcontrib><title>Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Although residual stress (RS) and crack closure (CC) are generally accepted as predominant factors affecting post-overload fatigue crack growth (FCG), they cannot explain many peculiarities of FCG variation. Understanding overload mechanisms is essential to life prediction in variable amplitude fatigue load. In this study, the RS contribution behind and ahead of a crack tip and its relation to CC and stress intensity of fatigue cycling is clarified through combination of different stress ratios, heat treatment, overloads, and removals of crack wake and crack-tip plastic zone. Results indicate that overload-induced RS contribution is a single decisive factor for post-overload FCG rate without initial acceleration, and exhibits CC dependence behind crack tip and applied stress-intensity dependence ahead of crack tip.
[Display omitted]
•OL-induced RS contribution to fatigue retardation shows CC and Kmin dependence.•CC without carrying RS has no influence on fatigue retardation, and vice versa.•RS ahead of crack tip contributes to fatigue retardation only under KRS + Kmin < 0.</description><subject>Crack closure</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Fatigue crack growth</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Heat treatment</subject><subject>Life prediction</subject><subject>Overload</subject><subject>Overloading</subject><subject>Plastic zones</subject><subject>Residual stress</subject><subject>Stress intensity</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4CrgempyZjKdATdSvEHBjV2HTHKmpE6TmmQKXfrmpla3rnIg_3cuHyE3nE054_XderqJqKbAgE95BVA3J2TCm1lZVG1Zn5IJa4EXgrXlObmIcc0Y4xUTE_K1dDu0g3Urqr1LwXZjst5R31O_wzB4ZQrrzKjR0IDRmlENNKZcRpo87VWyqxHzV1LBqB90iyFZhy4dAjoo_UH14OMYkCpn_mDrErpo0_6KnPVqiHj9-16S5dPj-_ylWLw9v84fFoUuoUkFVK3RBmrWm76DqkEFNXatqMSsnEHPkOeDuhraqhOISphSMcF4k7kZNnVTXpLbY99t8J8jxiTXfgwuj5RQQ1kJEMBzCo4pHXyMAXu5DXajwl5yJg-q5VoeVMuDanlUnaH7I4R5_53FIKO26LIzG1Anabz9D_8GElaKNQ</recordid><startdate>20220113</startdate><enddate>20220113</enddate><creator>Zhang, Chunguo</creator><creator>Lu, Weidong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220113</creationdate><title>Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity</title><author>Zhang, Chunguo ; Lu, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-249dcd260fdfb248ea26eb95457372f0e1140b6294b5eea5d3a050182497e8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Crack closure</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Fatigue crack growth</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Heat treatment</topic><topic>Life prediction</topic><topic>Overload</topic><topic>Overloading</topic><topic>Plastic zones</topic><topic>Residual stress</topic><topic>Stress intensity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunguo</creatorcontrib><creatorcontrib>Lu, Weidong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chunguo</au><au>Lu, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2022-01-13</date><risdate>2022</risdate><volume>831</volume><spage>142268</spage><pages>142268-</pages><artnum>142268</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Although residual stress (RS) and crack closure (CC) are generally accepted as predominant factors affecting post-overload fatigue crack growth (FCG), they cannot explain many peculiarities of FCG variation. Understanding overload mechanisms is essential to life prediction in variable amplitude fatigue load. In this study, the RS contribution behind and ahead of a crack tip and its relation to CC and stress intensity of fatigue cycling is clarified through combination of different stress ratios, heat treatment, overloads, and removals of crack wake and crack-tip plastic zone. Results indicate that overload-induced RS contribution is a single decisive factor for post-overload FCG rate without initial acceleration, and exhibits CC dependence behind crack tip and applied stress-intensity dependence ahead of crack tip.
[Display omitted]
•OL-induced RS contribution to fatigue retardation shows CC and Kmin dependence.•CC without carrying RS has no influence on fatigue retardation, and vice versa.•RS ahead of crack tip contributes to fatigue retardation only under KRS + Kmin < 0.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.142268</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.831, p.142268, Article 142268 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2623452521 |
source | Elsevier ScienceDirect Journals |
subjects | Crack closure Crack propagation Crack tips Fatigue crack growth Fatigue failure Fracture mechanics Heat treatment Life prediction Overload Overloading Plastic zones Residual stress Stress intensity |
title | Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20contribution%20of%20overload-induced%20residual%20stress%20to%20fatigue%20retardation%20pertinent%20to%20crack%20closure%20and%20stress%20intensity&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Zhang,%20Chunguo&rft.date=2022-01-13&rft.volume=831&rft.spage=142268&rft.pages=142268-&rft.artnum=142268&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.142268&rft_dat=%3Cproquest_cross%3E2623452521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623452521&rft_id=info:pmid/&rft_els_id=S092150932101532X&rfr_iscdi=true |