Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms

Detailed mapping of soil attributes is often not viable due to the high cost of wet‐chemical laboratory analysis, which requires a large number of samples. Thus, we evaluated whether the prediction of SOC contents through field‐specific diffuse reflectance spectroscopy (DRS) can increase the amount...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil use and management 2022-01, Vol.38 (1), p.292-303
Hauptverfasser: Camargo, Livia Arantes, Amaral, Lucas Rios, Reis, Aliny Aparecida, Brasco, Thiago Luis, Magalhães, Paulo Sergio Graziano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 1
container_start_page 292
container_title Soil use and management
container_volume 38
creator Camargo, Livia Arantes
Amaral, Lucas Rios
Reis, Aliny Aparecida
Brasco, Thiago Luis
Magalhães, Paulo Sergio Graziano
description Detailed mapping of soil attributes is often not viable due to the high cost of wet‐chemical laboratory analysis, which requires a large number of samples. Thus, we evaluated whether the prediction of SOC contents through field‐specific diffuse reflectance spectroscopy (DRS) can increase the amount of samples available to SOC mapping through data interpolation. For such, we tested the performance of the partial least squares regression (PLSR), random forest (RF) and gradient boosting tree (GBT) algorithms to model and predict SOC. The field‐specific calibration approach proposed here proved to be suitable for predicting SOC content on soil samples, reducing the dependence on wet‐chemical soil laboratory analyses for mapping. With such SOC content prediction, the higher amount of samples to be used for spatial interpolation can be increased, leading to more accurate SOC maps that can be applied for site‐specific management.
doi_str_mv 10.1111/sum.12775
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623239145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623239145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-6d642db7e7737606dd1d182696f8d9d353198039b793ef11783d8017198e23673</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqUw8AaWmBja-qe1kxFV_FQqYoDOkWM7iSsnDnZC1Y1HYOfteBKclhUvV_L97j33HACuMZri-Gahr6eYcL44ASM854sJ4XN6CkaIMDZBiJJzcBHCFiGCOUMj8L2qW-8-TFPC4IyFzpeiMRJK4XPXwFq07dDbma6CAhZGW_Xz-RVaLU1xwKzJvehMZCPqnZAV7Crv-rKCyhRFHzT0urBadqKRGg6TnXdBunYPRaOigqxMo6HVwjeDlLCl81GuDpfgrBA26Ku_Ogabh_u35dNk_fK4Wt6tJ5Kk0SFTbE5UzjXnNHpiSmGFE8JSViQqVXRBcZogmuY8pbrAmCdUJQjz-KsJZZyOwc1xb7z_vdehy7au902UzAgjlNAUzxeRuj1SMp4foqes9aYWfp9hlA3ZZzH77JB9ZGdHdmes3v8PZq-b5-PEL3dYiZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623239145</pqid></control><display><type>article</type><title>Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Camargo, Livia Arantes ; Amaral, Lucas Rios ; Reis, Aliny Aparecida ; Brasco, Thiago Luis ; Magalhães, Paulo Sergio Graziano</creator><creatorcontrib>Camargo, Livia Arantes ; Amaral, Lucas Rios ; Reis, Aliny Aparecida ; Brasco, Thiago Luis ; Magalhães, Paulo Sergio Graziano</creatorcontrib><description>Detailed mapping of soil attributes is often not viable due to the high cost of wet‐chemical laboratory analysis, which requires a large number of samples. Thus, we evaluated whether the prediction of SOC contents through field‐specific diffuse reflectance spectroscopy (DRS) can increase the amount of samples available to SOC mapping through data interpolation. For such, we tested the performance of the partial least squares regression (PLSR), random forest (RF) and gradient boosting tree (GBT) algorithms to model and predict SOC. The field‐specific calibration approach proposed here proved to be suitable for predicting SOC content on soil samples, reducing the dependence on wet‐chemical soil laboratory analyses for mapping. With such SOC content prediction, the higher amount of samples to be used for spatial interpolation can be increased, leading to more accurate SOC maps that can be applied for site‐specific management.</description><identifier>ISSN: 0266-0032</identifier><identifier>EISSN: 1475-2743</identifier><identifier>DOI: 10.1111/sum.12775</identifier><language>eng</language><publisher>Bedfordshire: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Analytical methods ; Calibration ; Cost analysis ; Diffuse reflectance spectroscopy ; Interpolation ; Laboratories ; Learning algorithms ; Least squares method ; Machine learning ; Mapping ; Organic carbon ; Organic soils ; pedometric ; precision agriculture ; proximal soil sensing ; Reflectance ; Soil ; Soil analysis ; Soil chemistry ; Soil improvement ; soil organic matter ; soil quality ; Spectroscopy ; Spectrum analysis</subject><ispartof>Soil use and management, 2022-01, Vol.38 (1), p.292-303</ispartof><rights>2021 British Society of Soil Science</rights><rights>2022 British Society of Soil Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-6d642db7e7737606dd1d182696f8d9d353198039b793ef11783d8017198e23673</citedby><cites>FETCH-LOGICAL-c2975-6d642db7e7737606dd1d182696f8d9d353198039b793ef11783d8017198e23673</cites><orcidid>0000-0002-7115-1485 ; 0000-0003-4097-7513 ; 0000-0002-5374-3591 ; 0000-0001-8071-4449 ; 0000-0001-8567-4191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsum.12775$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsum.12775$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Camargo, Livia Arantes</creatorcontrib><creatorcontrib>Amaral, Lucas Rios</creatorcontrib><creatorcontrib>Reis, Aliny Aparecida</creatorcontrib><creatorcontrib>Brasco, Thiago Luis</creatorcontrib><creatorcontrib>Magalhães, Paulo Sergio Graziano</creatorcontrib><title>Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms</title><title>Soil use and management</title><description>Detailed mapping of soil attributes is often not viable due to the high cost of wet‐chemical laboratory analysis, which requires a large number of samples. Thus, we evaluated whether the prediction of SOC contents through field‐specific diffuse reflectance spectroscopy (DRS) can increase the amount of samples available to SOC mapping through data interpolation. For such, we tested the performance of the partial least squares regression (PLSR), random forest (RF) and gradient boosting tree (GBT) algorithms to model and predict SOC. The field‐specific calibration approach proposed here proved to be suitable for predicting SOC content on soil samples, reducing the dependence on wet‐chemical soil laboratory analyses for mapping. With such SOC content prediction, the higher amount of samples to be used for spatial interpolation can be increased, leading to more accurate SOC maps that can be applied for site‐specific management.</description><subject>Algorithms</subject><subject>Analytical methods</subject><subject>Calibration</subject><subject>Cost analysis</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Interpolation</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Least squares method</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>pedometric</subject><subject>precision agriculture</subject><subject>proximal soil sensing</subject><subject>Reflectance</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil chemistry</subject><subject>Soil improvement</subject><subject>soil organic matter</subject><subject>soil quality</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0266-0032</issn><issn>1475-2743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqUw8AaWmBja-qe1kxFV_FQqYoDOkWM7iSsnDnZC1Y1HYOfteBKclhUvV_L97j33HACuMZri-Gahr6eYcL44ASM854sJ4XN6CkaIMDZBiJJzcBHCFiGCOUMj8L2qW-8-TFPC4IyFzpeiMRJK4XPXwFq07dDbma6CAhZGW_Xz-RVaLU1xwKzJvehMZCPqnZAV7Crv-rKCyhRFHzT0urBadqKRGg6TnXdBunYPRaOigqxMo6HVwjeDlLCl81GuDpfgrBA26Ku_Ogabh_u35dNk_fK4Wt6tJ5Kk0SFTbE5UzjXnNHpiSmGFE8JSViQqVXRBcZogmuY8pbrAmCdUJQjz-KsJZZyOwc1xb7z_vdehy7au902UzAgjlNAUzxeRuj1SMp4foqes9aYWfp9hlA3ZZzH77JB9ZGdHdmes3v8PZq-b5-PEL3dYiZw</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Camargo, Livia Arantes</creator><creator>Amaral, Lucas Rios</creator><creator>Reis, Aliny Aparecida</creator><creator>Brasco, Thiago Luis</creator><creator>Magalhães, Paulo Sergio Graziano</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7115-1485</orcidid><orcidid>https://orcid.org/0000-0003-4097-7513</orcidid><orcidid>https://orcid.org/0000-0002-5374-3591</orcidid><orcidid>https://orcid.org/0000-0001-8071-4449</orcidid><orcidid>https://orcid.org/0000-0001-8567-4191</orcidid></search><sort><creationdate>202201</creationdate><title>Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms</title><author>Camargo, Livia Arantes ; Amaral, Lucas Rios ; Reis, Aliny Aparecida ; Brasco, Thiago Luis ; Magalhães, Paulo Sergio Graziano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-6d642db7e7737606dd1d182696f8d9d353198039b793ef11783d8017198e23673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical methods</topic><topic>Calibration</topic><topic>Cost analysis</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Interpolation</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Least squares method</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>pedometric</topic><topic>precision agriculture</topic><topic>proximal soil sensing</topic><topic>Reflectance</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil chemistry</topic><topic>Soil improvement</topic><topic>soil organic matter</topic><topic>soil quality</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camargo, Livia Arantes</creatorcontrib><creatorcontrib>Amaral, Lucas Rios</creatorcontrib><creatorcontrib>Reis, Aliny Aparecida</creatorcontrib><creatorcontrib>Brasco, Thiago Luis</creatorcontrib><creatorcontrib>Magalhães, Paulo Sergio Graziano</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Soil use and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camargo, Livia Arantes</au><au>Amaral, Lucas Rios</au><au>Reis, Aliny Aparecida</au><au>Brasco, Thiago Luis</au><au>Magalhães, Paulo Sergio Graziano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms</atitle><jtitle>Soil use and management</jtitle><date>2022-01</date><risdate>2022</risdate><volume>38</volume><issue>1</issue><spage>292</spage><epage>303</epage><pages>292-303</pages><issn>0266-0032</issn><eissn>1475-2743</eissn><abstract>Detailed mapping of soil attributes is often not viable due to the high cost of wet‐chemical laboratory analysis, which requires a large number of samples. Thus, we evaluated whether the prediction of SOC contents through field‐specific diffuse reflectance spectroscopy (DRS) can increase the amount of samples available to SOC mapping through data interpolation. For such, we tested the performance of the partial least squares regression (PLSR), random forest (RF) and gradient boosting tree (GBT) algorithms to model and predict SOC. The field‐specific calibration approach proposed here proved to be suitable for predicting SOC content on soil samples, reducing the dependence on wet‐chemical soil laboratory analyses for mapping. With such SOC content prediction, the higher amount of samples to be used for spatial interpolation can be increased, leading to more accurate SOC maps that can be applied for site‐specific management.</abstract><cop>Bedfordshire</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/sum.12775</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0002-7115-1485</orcidid><orcidid>https://orcid.org/0000-0003-4097-7513</orcidid><orcidid>https://orcid.org/0000-0002-5374-3591</orcidid><orcidid>https://orcid.org/0000-0001-8071-4449</orcidid><orcidid>https://orcid.org/0000-0001-8567-4191</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-0032
ispartof Soil use and management, 2022-01, Vol.38 (1), p.292-303
issn 0266-0032
1475-2743
language eng
recordid cdi_proquest_journals_2623239145
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Analytical methods
Calibration
Cost analysis
Diffuse reflectance spectroscopy
Interpolation
Laboratories
Learning algorithms
Least squares method
Machine learning
Mapping
Organic carbon
Organic soils
pedometric
precision agriculture
proximal soil sensing
Reflectance
Soil
Soil analysis
Soil chemistry
Soil improvement
soil organic matter
soil quality
Spectroscopy
Spectrum analysis
title Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20soil%20organic%20carbon%20mapping%20with%20a%20field%E2%80%90specific%20calibration%20approach%20through%20diffuse%20reflectance%20spectroscopy%20and%20machine%20learning%20algorithms&rft.jtitle=Soil%20use%20and%20management&rft.au=Camargo,%20Livia%20Arantes&rft.date=2022-01&rft.volume=38&rft.issue=1&rft.spage=292&rft.epage=303&rft.pages=292-303&rft.issn=0266-0032&rft.eissn=1475-2743&rft_id=info:doi/10.1111/sum.12775&rft_dat=%3Cproquest_cross%3E2623239145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623239145&rft_id=info:pmid/&rfr_iscdi=true