Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms
Detailed mapping of soil attributes is often not viable due to the high cost of wet‐chemical laboratory analysis, which requires a large number of samples. Thus, we evaluated whether the prediction of SOC contents through field‐specific diffuse reflectance spectroscopy (DRS) can increase the amount...
Gespeichert in:
Veröffentlicht in: | Soil use and management 2022-01, Vol.38 (1), p.292-303 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 1 |
container_start_page | 292 |
container_title | Soil use and management |
container_volume | 38 |
creator | Camargo, Livia Arantes Amaral, Lucas Rios Reis, Aliny Aparecida Brasco, Thiago Luis Magalhães, Paulo Sergio Graziano |
description | Detailed mapping of soil attributes is often not viable due to the high cost of wet‐chemical laboratory analysis, which requires a large number of samples. Thus, we evaluated whether the prediction of SOC contents through field‐specific diffuse reflectance spectroscopy (DRS) can increase the amount of samples available to SOC mapping through data interpolation. For such, we tested the performance of the partial least squares regression (PLSR), random forest (RF) and gradient boosting tree (GBT) algorithms to model and predict SOC. The field‐specific calibration approach proposed here proved to be suitable for predicting SOC content on soil samples, reducing the dependence on wet‐chemical soil laboratory analyses for mapping. With such SOC content prediction, the higher amount of samples to be used for spatial interpolation can be increased, leading to more accurate SOC maps that can be applied for site‐specific management. |
doi_str_mv | 10.1111/sum.12775 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623239145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623239145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-6d642db7e7737606dd1d182696f8d9d353198039b793ef11783d8017198e23673</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqUw8AaWmBja-qe1kxFV_FQqYoDOkWM7iSsnDnZC1Y1HYOfteBKclhUvV_L97j33HACuMZri-Gahr6eYcL44ASM854sJ4XN6CkaIMDZBiJJzcBHCFiGCOUMj8L2qW-8-TFPC4IyFzpeiMRJK4XPXwFq07dDbma6CAhZGW_Xz-RVaLU1xwKzJvehMZCPqnZAV7Crv-rKCyhRFHzT0urBadqKRGg6TnXdBunYPRaOigqxMo6HVwjeDlLCl81GuDpfgrBA26Ku_Ogabh_u35dNk_fK4Wt6tJ5Kk0SFTbE5UzjXnNHpiSmGFE8JSViQqVXRBcZogmuY8pbrAmCdUJQjz-KsJZZyOwc1xb7z_vdehy7au902UzAgjlNAUzxeRuj1SMp4foqes9aYWfp9hlA3ZZzH77JB9ZGdHdmes3v8PZq-b5-PEL3dYiZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623239145</pqid></control><display><type>article</type><title>Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Camargo, Livia Arantes ; Amaral, Lucas Rios ; Reis, Aliny Aparecida ; Brasco, Thiago Luis ; Magalhães, Paulo Sergio Graziano</creator><creatorcontrib>Camargo, Livia Arantes ; Amaral, Lucas Rios ; Reis, Aliny Aparecida ; Brasco, Thiago Luis ; Magalhães, Paulo Sergio Graziano</creatorcontrib><description>Detailed mapping of soil attributes is often not viable due to the high cost of wet‐chemical laboratory analysis, which requires a large number of samples. Thus, we evaluated whether the prediction of SOC contents through field‐specific diffuse reflectance spectroscopy (DRS) can increase the amount of samples available to SOC mapping through data interpolation. For such, we tested the performance of the partial least squares regression (PLSR), random forest (RF) and gradient boosting tree (GBT) algorithms to model and predict SOC. The field‐specific calibration approach proposed here proved to be suitable for predicting SOC content on soil samples, reducing the dependence on wet‐chemical soil laboratory analyses for mapping. With such SOC content prediction, the higher amount of samples to be used for spatial interpolation can be increased, leading to more accurate SOC maps that can be applied for site‐specific management.</description><identifier>ISSN: 0266-0032</identifier><identifier>EISSN: 1475-2743</identifier><identifier>DOI: 10.1111/sum.12775</identifier><language>eng</language><publisher>Bedfordshire: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Analytical methods ; Calibration ; Cost analysis ; Diffuse reflectance spectroscopy ; Interpolation ; Laboratories ; Learning algorithms ; Least squares method ; Machine learning ; Mapping ; Organic carbon ; Organic soils ; pedometric ; precision agriculture ; proximal soil sensing ; Reflectance ; Soil ; Soil analysis ; Soil chemistry ; Soil improvement ; soil organic matter ; soil quality ; Spectroscopy ; Spectrum analysis</subject><ispartof>Soil use and management, 2022-01, Vol.38 (1), p.292-303</ispartof><rights>2021 British Society of Soil Science</rights><rights>2022 British Society of Soil Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-6d642db7e7737606dd1d182696f8d9d353198039b793ef11783d8017198e23673</citedby><cites>FETCH-LOGICAL-c2975-6d642db7e7737606dd1d182696f8d9d353198039b793ef11783d8017198e23673</cites><orcidid>0000-0002-7115-1485 ; 0000-0003-4097-7513 ; 0000-0002-5374-3591 ; 0000-0001-8071-4449 ; 0000-0001-8567-4191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsum.12775$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsum.12775$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Camargo, Livia Arantes</creatorcontrib><creatorcontrib>Amaral, Lucas Rios</creatorcontrib><creatorcontrib>Reis, Aliny Aparecida</creatorcontrib><creatorcontrib>Brasco, Thiago Luis</creatorcontrib><creatorcontrib>Magalhães, Paulo Sergio Graziano</creatorcontrib><title>Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms</title><title>Soil use and management</title><description>Detailed mapping of soil attributes is often not viable due to the high cost of wet‐chemical laboratory analysis, which requires a large number of samples. Thus, we evaluated whether the prediction of SOC contents through field‐specific diffuse reflectance spectroscopy (DRS) can increase the amount of samples available to SOC mapping through data interpolation. For such, we tested the performance of the partial least squares regression (PLSR), random forest (RF) and gradient boosting tree (GBT) algorithms to model and predict SOC. The field‐specific calibration approach proposed here proved to be suitable for predicting SOC content on soil samples, reducing the dependence on wet‐chemical soil laboratory analyses for mapping. With such SOC content prediction, the higher amount of samples to be used for spatial interpolation can be increased, leading to more accurate SOC maps that can be applied for site‐specific management.</description><subject>Algorithms</subject><subject>Analytical methods</subject><subject>Calibration</subject><subject>Cost analysis</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Interpolation</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Least squares method</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>pedometric</subject><subject>precision agriculture</subject><subject>proximal soil sensing</subject><subject>Reflectance</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil chemistry</subject><subject>Soil improvement</subject><subject>soil organic matter</subject><subject>soil quality</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0266-0032</issn><issn>1475-2743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqUw8AaWmBja-qe1kxFV_FQqYoDOkWM7iSsnDnZC1Y1HYOfteBKclhUvV_L97j33HACuMZri-Gahr6eYcL44ASM854sJ4XN6CkaIMDZBiJJzcBHCFiGCOUMj8L2qW-8-TFPC4IyFzpeiMRJK4XPXwFq07dDbma6CAhZGW_Xz-RVaLU1xwKzJvehMZCPqnZAV7Crv-rKCyhRFHzT0urBadqKRGg6TnXdBunYPRaOigqxMo6HVwjeDlLCl81GuDpfgrBA26Ku_Ogabh_u35dNk_fK4Wt6tJ5Kk0SFTbE5UzjXnNHpiSmGFE8JSViQqVXRBcZogmuY8pbrAmCdUJQjz-KsJZZyOwc1xb7z_vdehy7au902UzAgjlNAUzxeRuj1SMp4foqes9aYWfp9hlA3ZZzH77JB9ZGdHdmes3v8PZq-b5-PEL3dYiZw</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Camargo, Livia Arantes</creator><creator>Amaral, Lucas Rios</creator><creator>Reis, Aliny Aparecida</creator><creator>Brasco, Thiago Luis</creator><creator>Magalhães, Paulo Sergio Graziano</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7115-1485</orcidid><orcidid>https://orcid.org/0000-0003-4097-7513</orcidid><orcidid>https://orcid.org/0000-0002-5374-3591</orcidid><orcidid>https://orcid.org/0000-0001-8071-4449</orcidid><orcidid>https://orcid.org/0000-0001-8567-4191</orcidid></search><sort><creationdate>202201</creationdate><title>Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms</title><author>Camargo, Livia Arantes ; Amaral, Lucas Rios ; Reis, Aliny Aparecida ; Brasco, Thiago Luis ; Magalhães, Paulo Sergio Graziano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-6d642db7e7737606dd1d182696f8d9d353198039b793ef11783d8017198e23673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical methods</topic><topic>Calibration</topic><topic>Cost analysis</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Interpolation</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Least squares method</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>pedometric</topic><topic>precision agriculture</topic><topic>proximal soil sensing</topic><topic>Reflectance</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil chemistry</topic><topic>Soil improvement</topic><topic>soil organic matter</topic><topic>soil quality</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camargo, Livia Arantes</creatorcontrib><creatorcontrib>Amaral, Lucas Rios</creatorcontrib><creatorcontrib>Reis, Aliny Aparecida</creatorcontrib><creatorcontrib>Brasco, Thiago Luis</creatorcontrib><creatorcontrib>Magalhães, Paulo Sergio Graziano</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Soil use and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camargo, Livia Arantes</au><au>Amaral, Lucas Rios</au><au>Reis, Aliny Aparecida</au><au>Brasco, Thiago Luis</au><au>Magalhães, Paulo Sergio Graziano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms</atitle><jtitle>Soil use and management</jtitle><date>2022-01</date><risdate>2022</risdate><volume>38</volume><issue>1</issue><spage>292</spage><epage>303</epage><pages>292-303</pages><issn>0266-0032</issn><eissn>1475-2743</eissn><abstract>Detailed mapping of soil attributes is often not viable due to the high cost of wet‐chemical laboratory analysis, which requires a large number of samples. Thus, we evaluated whether the prediction of SOC contents through field‐specific diffuse reflectance spectroscopy (DRS) can increase the amount of samples available to SOC mapping through data interpolation. For such, we tested the performance of the partial least squares regression (PLSR), random forest (RF) and gradient boosting tree (GBT) algorithms to model and predict SOC. The field‐specific calibration approach proposed here proved to be suitable for predicting SOC content on soil samples, reducing the dependence on wet‐chemical soil laboratory analyses for mapping. With such SOC content prediction, the higher amount of samples to be used for spatial interpolation can be increased, leading to more accurate SOC maps that can be applied for site‐specific management.</abstract><cop>Bedfordshire</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/sum.12775</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0002-7115-1485</orcidid><orcidid>https://orcid.org/0000-0003-4097-7513</orcidid><orcidid>https://orcid.org/0000-0002-5374-3591</orcidid><orcidid>https://orcid.org/0000-0001-8071-4449</orcidid><orcidid>https://orcid.org/0000-0001-8567-4191</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-0032 |
ispartof | Soil use and management, 2022-01, Vol.38 (1), p.292-303 |
issn | 0266-0032 1475-2743 |
language | eng |
recordid | cdi_proquest_journals_2623239145 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Analytical methods Calibration Cost analysis Diffuse reflectance spectroscopy Interpolation Laboratories Learning algorithms Least squares method Machine learning Mapping Organic carbon Organic soils pedometric precision agriculture proximal soil sensing Reflectance Soil Soil analysis Soil chemistry Soil improvement soil organic matter soil quality Spectroscopy Spectrum analysis |
title | Improving soil organic carbon mapping with a field‐specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20soil%20organic%20carbon%20mapping%20with%20a%20field%E2%80%90specific%20calibration%20approach%20through%20diffuse%20reflectance%20spectroscopy%20and%20machine%20learning%20algorithms&rft.jtitle=Soil%20use%20and%20management&rft.au=Camargo,%20Livia%20Arantes&rft.date=2022-01&rft.volume=38&rft.issue=1&rft.spage=292&rft.epage=303&rft.pages=292-303&rft.issn=0266-0032&rft.eissn=1475-2743&rft_id=info:doi/10.1111/sum.12775&rft_dat=%3Cproquest_cross%3E2623239145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623239145&rft_id=info:pmid/&rfr_iscdi=true |