Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks
The Nile River provides Egypt with most of its water resources. Medium- and long-rage forecasts of Nile flows at Aswan have been recognized as of significant importance to allow better management and operation of the water resource facilities and mitigate the risks of both droughts and floods. In th...
Gespeichert in:
Veröffentlicht in: | Natural hazards (Dordrecht) 2022, Vol.110 (1), p.741-763 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 763 |
---|---|
container_issue | 1 |
container_start_page | 741 |
container_title | Natural hazards (Dordrecht) |
container_volume | 110 |
creator | Ahmed, Hossam M. Awadallah, Ayman G. El-Zawahry, Alaa El-Din M. Hamed, Khaled H. |
description | The Nile River provides Egypt with most of its water resources. Medium- and long-rage forecasts of Nile flows at Aswan have been recognized as of significant importance to allow better management and operation of the water resource facilities and mitigate the risks of both droughts and floods. In this study, a wide range of climate indices and atmospheric fields were used as potential predictors for long-range forecasting of Nile streamflow for one flood season ahead (July–October). The approach followed in this study focuses on searching for potential predictors, reducing the pool of potential predictors by using multivariate statistical analysis, applying sequentially, Canonical Correlation Analysis, Principal Component Analysis, and multiple linear regression to robustly forecast the Nile flow. The proposed approach proved to be very useful for improving long-range Nile River flow forecasting. It revealed the adequacy of the models and enhanced the accuracy of the predictions of the full spectrum of droughts and floods, both in the calibration and validation phases, over the simple stepwise regression method using all climate indices and atmospheric fields as potential predictors. |
doi_str_mv | 10.1007/s11069-021-04968-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623200947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623200947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-cc4d75a3ae0efc63a33075f6700bc83477cabb44cd806fb38af88fe02bde55f3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKf_gKeA5-iXpm3aowx_wVSQHbyFNE1qZtvMJJ3sv7fdBG-eAt_7vg_kQeiSwjUF4DeBUshLAgklkJZ5QdgRmtGMMwJFCsdoBuUUMXg_RWchrAEozZNyhsLz0Ea7ld7KqLHsZbsLNmDjPO50bYeOjMcat65viJd9o6dIKxmi7RvsDH6xrcZvdqs9Nq37xtHhzkbbTLjau6H5iHvCGLoaexs-wzk6MbIN-uL3naPV_d1q8UiWrw9Pi9slUQmHSJRKa55JJjVoo3ImGQOemZwDVKpgKedKVlWaqrqA3FSskKYojIakqnWWGTZHVwfsxruvQYco1m7w4w-DSPKEJQBlysdWcmgp70Lw2oiNt530O0FBTG7Fwa0Y3Yq9W8HGETuMwlgepfg_9D-rH6xkfqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623200947</pqid></control><display><type>article</type><title>Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ahmed, Hossam M. ; Awadallah, Ayman G. ; El-Zawahry, Alaa El-Din M. ; Hamed, Khaled H.</creator><creatorcontrib>Ahmed, Hossam M. ; Awadallah, Ayman G. ; El-Zawahry, Alaa El-Din M. ; Hamed, Khaled H.</creatorcontrib><description>The Nile River provides Egypt with most of its water resources. Medium- and long-rage forecasts of Nile flows at Aswan have been recognized as of significant importance to allow better management and operation of the water resource facilities and mitigate the risks of both droughts and floods. In this study, a wide range of climate indices and atmospheric fields were used as potential predictors for long-range forecasting of Nile streamflow for one flood season ahead (July–October). The approach followed in this study focuses on searching for potential predictors, reducing the pool of potential predictors by using multivariate statistical analysis, applying sequentially, Canonical Correlation Analysis, Principal Component Analysis, and multiple linear regression to robustly forecast the Nile flow. The proposed approach proved to be very useful for improving long-range Nile River flow forecasting. It revealed the adequacy of the models and enhanced the accuracy of the predictions of the full spectrum of droughts and floods, both in the calibration and validation phases, over the simple stepwise regression method using all climate indices and atmospheric fields as potential predictors.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-021-04968-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adequacy ; Atmospheric models ; Civil Engineering ; Climate ; Climatic indexes ; Correlation analysis ; Drought ; Drought and floods ; Earth and Environmental Science ; Earth Sciences ; Environmental Management ; Environmental risk ; Fields ; Flood forecasting ; Flood predictions ; Flood risk ; Floods ; Forecasting ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Long-range forecasting ; Multivariate analysis ; Multivariate statistical analysis ; Natural Hazards ; Original Paper ; Principal components analysis ; Risk reduction ; River flow ; River forecasting ; Rivers ; Statistical analysis ; Statistical methods ; Stream discharge ; Stream flow ; Water resources</subject><ispartof>Natural hazards (Dordrecht), 2022, Vol.110 (1), p.741-763</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-cc4d75a3ae0efc63a33075f6700bc83477cabb44cd806fb38af88fe02bde55f3</cites><orcidid>0000-0002-8546-5207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-021-04968-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-021-04968-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ahmed, Hossam M.</creatorcontrib><creatorcontrib>Awadallah, Ayman G.</creatorcontrib><creatorcontrib>El-Zawahry, Alaa El-Din M.</creatorcontrib><creatorcontrib>Hamed, Khaled H.</creatorcontrib><title>Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>The Nile River provides Egypt with most of its water resources. Medium- and long-rage forecasts of Nile flows at Aswan have been recognized as of significant importance to allow better management and operation of the water resource facilities and mitigate the risks of both droughts and floods. In this study, a wide range of climate indices and atmospheric fields were used as potential predictors for long-range forecasting of Nile streamflow for one flood season ahead (July–October). The approach followed in this study focuses on searching for potential predictors, reducing the pool of potential predictors by using multivariate statistical analysis, applying sequentially, Canonical Correlation Analysis, Principal Component Analysis, and multiple linear regression to robustly forecast the Nile flow. The proposed approach proved to be very useful for improving long-range Nile River flow forecasting. It revealed the adequacy of the models and enhanced the accuracy of the predictions of the full spectrum of droughts and floods, both in the calibration and validation phases, over the simple stepwise regression method using all climate indices and atmospheric fields as potential predictors.</description><subject>Adequacy</subject><subject>Atmospheric models</subject><subject>Civil Engineering</subject><subject>Climate</subject><subject>Climatic indexes</subject><subject>Correlation analysis</subject><subject>Drought</subject><subject>Drought and floods</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Management</subject><subject>Environmental risk</subject><subject>Fields</subject><subject>Flood forecasting</subject><subject>Flood predictions</subject><subject>Flood risk</subject><subject>Floods</subject><subject>Forecasting</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Long-range forecasting</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Natural Hazards</subject><subject>Original Paper</subject><subject>Principal components analysis</subject><subject>Risk reduction</subject><subject>River flow</subject><subject>River forecasting</subject><subject>Rivers</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Water resources</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9LwzAYhoMoOKf_gKeA5-iXpm3aowx_wVSQHbyFNE1qZtvMJJ3sv7fdBG-eAt_7vg_kQeiSwjUF4DeBUshLAgklkJZ5QdgRmtGMMwJFCsdoBuUUMXg_RWchrAEozZNyhsLz0Ea7ld7KqLHsZbsLNmDjPO50bYeOjMcat65viJd9o6dIKxmi7RvsDH6xrcZvdqs9Nq37xtHhzkbbTLjau6H5iHvCGLoaexs-wzk6MbIN-uL3naPV_d1q8UiWrw9Pi9slUQmHSJRKa55JJjVoo3ImGQOemZwDVKpgKedKVlWaqrqA3FSskKYojIakqnWWGTZHVwfsxruvQYco1m7w4w-DSPKEJQBlysdWcmgp70Lw2oiNt530O0FBTG7Fwa0Y3Yq9W8HGETuMwlgepfg_9D-rH6xkfqQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ahmed, Hossam M.</creator><creator>Awadallah, Ayman G.</creator><creator>El-Zawahry, Alaa El-Din M.</creator><creator>Hamed, Khaled H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8546-5207</orcidid></search><sort><creationdate>2022</creationdate><title>Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks</title><author>Ahmed, Hossam M. ; Awadallah, Ayman G. ; El-Zawahry, Alaa El-Din M. ; Hamed, Khaled H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-cc4d75a3ae0efc63a33075f6700bc83477cabb44cd806fb38af88fe02bde55f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adequacy</topic><topic>Atmospheric models</topic><topic>Civil Engineering</topic><topic>Climate</topic><topic>Climatic indexes</topic><topic>Correlation analysis</topic><topic>Drought</topic><topic>Drought and floods</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Management</topic><topic>Environmental risk</topic><topic>Fields</topic><topic>Flood forecasting</topic><topic>Flood predictions</topic><topic>Flood risk</topic><topic>Floods</topic><topic>Forecasting</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Long-range forecasting</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Natural Hazards</topic><topic>Original Paper</topic><topic>Principal components analysis</topic><topic>Risk reduction</topic><topic>River flow</topic><topic>River forecasting</topic><topic>Rivers</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Hossam M.</creatorcontrib><creatorcontrib>Awadallah, Ayman G.</creatorcontrib><creatorcontrib>El-Zawahry, Alaa El-Din M.</creatorcontrib><creatorcontrib>Hamed, Khaled H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Hossam M.</au><au>Awadallah, Ayman G.</au><au>El-Zawahry, Alaa El-Din M.</au><au>Hamed, Khaled H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2022</date><risdate>2022</risdate><volume>110</volume><issue>1</issue><spage>741</spage><epage>763</epage><pages>741-763</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>The Nile River provides Egypt with most of its water resources. Medium- and long-rage forecasts of Nile flows at Aswan have been recognized as of significant importance to allow better management and operation of the water resource facilities and mitigate the risks of both droughts and floods. In this study, a wide range of climate indices and atmospheric fields were used as potential predictors for long-range forecasting of Nile streamflow for one flood season ahead (July–October). The approach followed in this study focuses on searching for potential predictors, reducing the pool of potential predictors by using multivariate statistical analysis, applying sequentially, Canonical Correlation Analysis, Principal Component Analysis, and multiple linear regression to robustly forecast the Nile flow. The proposed approach proved to be very useful for improving long-range Nile River flow forecasting. It revealed the adequacy of the models and enhanced the accuracy of the predictions of the full spectrum of droughts and floods, both in the calibration and validation phases, over the simple stepwise regression method using all climate indices and atmospheric fields as potential predictors.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-021-04968-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8546-5207</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-030X |
ispartof | Natural hazards (Dordrecht), 2022, Vol.110 (1), p.741-763 |
issn | 0921-030X 1573-0840 |
language | eng |
recordid | cdi_proquest_journals_2623200947 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adequacy Atmospheric models Civil Engineering Climate Climatic indexes Correlation analysis Drought Drought and floods Earth and Environmental Science Earth Sciences Environmental Management Environmental risk Fields Flood forecasting Flood predictions Flood risk Floods Forecasting Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Long-range forecasting Multivariate analysis Multivariate statistical analysis Natural Hazards Original Paper Principal components analysis Risk reduction River flow River forecasting Rivers Statistical analysis Statistical methods Stream discharge Stream flow Water resources |
title | Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20analysis%20for%20medium-%20and%20long-range%20forecasting%20of%20Nile%20River%20flow%20to%20mitigate%20drought%20and%20flood%20risks&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Ahmed,%20Hossam%20M.&rft.date=2022&rft.volume=110&rft.issue=1&rft.spage=741&rft.epage=763&rft.pages=741-763&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-021-04968-3&rft_dat=%3Cproquest_cross%3E2623200947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623200947&rft_id=info:pmid/&rfr_iscdi=true |