Improved roughness measurement method using fiber Bragg gratings and machine learning
•Roughness is measured using fiber Bragg gratings and machine learning.•Eight strain features of FBGs are used as inputs of machine learning for sensing.•Polynomial regression with principal component analysis is used for prediction.•Improved decision tree algorithm has a high roughness classificati...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2021-12, Vol.332, p.113161, Article 113161 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 113161 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 332 |
creator | Ren, Naikui Yu, Youlong Li, Hongyang |
description | •Roughness is measured using fiber Bragg gratings and machine learning.•Eight strain features of FBGs are used as inputs of machine learning for sensing.•Polynomial regression with principal component analysis is used for prediction.•Improved decision tree algorithm has a high roughness classification performance.
[Display omitted]
An improved roughness measurement system is proposed that uses fiber Bragg gratings (FBGs) and machine learning. One sensor is a stylus profiler fabricated from FBG and silicone, and the other is a strain sensor fabricated from FBG. Eight statistical strain features of FBGs are extracted for intelligent sensing. Experimental results clearly showed that most strain features changed monotonically with the roughness and could be used individually to measure roughness. Roughness prediction and classification were realized with a polynomial regression algorithm using principal component analysis and a decision tree, respectively. The polynomial regression algorithm had a better performance compared with support vector regression. Corresponding optimized mean square error and coefficient of determination for the roughness prediction were 0.0035 µm and 0.9950, respectively. The macro-averaged F1 score for roughness classification after optimization was 0.98932. |
doi_str_mv | 10.1016/j.sna.2021.113161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623046533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424721006269</els_id><sourcerecordid>2623046533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-3c0c4c9a769c64a47547ad060e06c9f788702a4863e696acfc90a830e39cf2493</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewssU4ZP2rHYgUVj0qV2NC1ZZxJmqhxip1U4u8xKmtWM7q6dx6HkFsGCwZM3XeLFNyCA2cLxgRT7IzMWKlFIUCZczIDw2UhudSX5CqlDgCE0HpGtuv-EIcjVjQOU7MLmBLt0aUpYo9hzP24Gyo6pTY0tG4_MdKn6JqGNtGNWUvUhYr2zu_agHSPLoasXpOL2u0T3vzVOdm-PH-s3orN--t69bgpvODLsRAevPTGaWW8kk7qpdSuAgUIyptal6UG7mSpBCqjnK-9AVcKQGF8zaURc3J3mpt_-JowjbYbphjySssVFyDVUojsYieXj0NKEWt7iG3v4rdlYH_p2c5mevaXnj3Ry5mHUwbz-ccWo02-xeCxaiP60VZD-0_6Byz9d2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623046533</pqid></control><display><type>article</type><title>Improved roughness measurement method using fiber Bragg gratings and machine learning</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ren, Naikui ; Yu, Youlong ; Li, Hongyang</creator><creatorcontrib>Ren, Naikui ; Yu, Youlong ; Li, Hongyang</creatorcontrib><description>•Roughness is measured using fiber Bragg gratings and machine learning.•Eight strain features of FBGs are used as inputs of machine learning for sensing.•Polynomial regression with principal component analysis is used for prediction.•Improved decision tree algorithm has a high roughness classification performance.
[Display omitted]
An improved roughness measurement system is proposed that uses fiber Bragg gratings (FBGs) and machine learning. One sensor is a stylus profiler fabricated from FBG and silicone, and the other is a strain sensor fabricated from FBG. Eight statistical strain features of FBGs are extracted for intelligent sensing. Experimental results clearly showed that most strain features changed monotonically with the roughness and could be used individually to measure roughness. Roughness prediction and classification were realized with a polynomial regression algorithm using principal component analysis and a decision tree, respectively. The polynomial regression algorithm had a better performance compared with support vector regression. Corresponding optimized mean square error and coefficient of determination for the roughness prediction were 0.0035 µm and 0.9950, respectively. The macro-averaged F1 score for roughness classification after optimization was 0.98932.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2021.113161</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithms ; Bragg gratings ; Classification ; Decision analysis ; Decision trees ; Feature extraction ; Fiber optics ; Machine learning ; Measurement methods ; Optimization ; Polynomials ; Principal components analysis ; Regression ; Regression analysis ; Roughness ; Sensors ; Statistical analysis ; Styli ; Support vector machines ; Surface roughness</subject><ispartof>Sensors and actuators. A. Physical., 2021-12, Vol.332, p.113161, Article 113161</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-3c0c4c9a769c64a47547ad060e06c9f788702a4863e696acfc90a830e39cf2493</citedby><cites>FETCH-LOGICAL-c325t-3c0c4c9a769c64a47547ad060e06c9f788702a4863e696acfc90a830e39cf2493</cites><orcidid>0000-0002-3038-0257 ; 0000-0002-5101-0503 ; 0000-0002-5868-0972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924424721006269$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Ren, Naikui</creatorcontrib><creatorcontrib>Yu, Youlong</creatorcontrib><creatorcontrib>Li, Hongyang</creatorcontrib><title>Improved roughness measurement method using fiber Bragg gratings and machine learning</title><title>Sensors and actuators. A. Physical.</title><description>•Roughness is measured using fiber Bragg gratings and machine learning.•Eight strain features of FBGs are used as inputs of machine learning for sensing.•Polynomial regression with principal component analysis is used for prediction.•Improved decision tree algorithm has a high roughness classification performance.
[Display omitted]
An improved roughness measurement system is proposed that uses fiber Bragg gratings (FBGs) and machine learning. One sensor is a stylus profiler fabricated from FBG and silicone, and the other is a strain sensor fabricated from FBG. Eight statistical strain features of FBGs are extracted for intelligent sensing. Experimental results clearly showed that most strain features changed monotonically with the roughness and could be used individually to measure roughness. Roughness prediction and classification were realized with a polynomial regression algorithm using principal component analysis and a decision tree, respectively. The polynomial regression algorithm had a better performance compared with support vector regression. Corresponding optimized mean square error and coefficient of determination for the roughness prediction were 0.0035 µm and 0.9950, respectively. The macro-averaged F1 score for roughness classification after optimization was 0.98932.</description><subject>Algorithms</subject><subject>Bragg gratings</subject><subject>Classification</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>Fiber optics</subject><subject>Machine learning</subject><subject>Measurement methods</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Principal components analysis</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Roughness</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>Styli</subject><subject>Support vector machines</subject><subject>Surface roughness</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewssU4ZP2rHYgUVj0qV2NC1ZZxJmqhxip1U4u8xKmtWM7q6dx6HkFsGCwZM3XeLFNyCA2cLxgRT7IzMWKlFIUCZczIDw2UhudSX5CqlDgCE0HpGtuv-EIcjVjQOU7MLmBLt0aUpYo9hzP24Gyo6pTY0tG4_MdKn6JqGNtGNWUvUhYr2zu_agHSPLoasXpOL2u0T3vzVOdm-PH-s3orN--t69bgpvODLsRAevPTGaWW8kk7qpdSuAgUIyptal6UG7mSpBCqjnK-9AVcKQGF8zaURc3J3mpt_-JowjbYbphjySssVFyDVUojsYieXj0NKEWt7iG3v4rdlYH_p2c5mevaXnj3Ry5mHUwbz-ccWo02-xeCxaiP60VZD-0_6Byz9d2Q</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ren, Naikui</creator><creator>Yu, Youlong</creator><creator>Li, Hongyang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3038-0257</orcidid><orcidid>https://orcid.org/0000-0002-5101-0503</orcidid><orcidid>https://orcid.org/0000-0002-5868-0972</orcidid></search><sort><creationdate>20211201</creationdate><title>Improved roughness measurement method using fiber Bragg gratings and machine learning</title><author>Ren, Naikui ; Yu, Youlong ; Li, Hongyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-3c0c4c9a769c64a47547ad060e06c9f788702a4863e696acfc90a830e39cf2493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bragg gratings</topic><topic>Classification</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>Fiber optics</topic><topic>Machine learning</topic><topic>Measurement methods</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Principal components analysis</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Roughness</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>Styli</topic><topic>Support vector machines</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Naikui</creatorcontrib><creatorcontrib>Yu, Youlong</creatorcontrib><creatorcontrib>Li, Hongyang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Naikui</au><au>Yu, Youlong</au><au>Li, Hongyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved roughness measurement method using fiber Bragg gratings and machine learning</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>332</volume><spage>113161</spage><pages>113161-</pages><artnum>113161</artnum><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>•Roughness is measured using fiber Bragg gratings and machine learning.•Eight strain features of FBGs are used as inputs of machine learning for sensing.•Polynomial regression with principal component analysis is used for prediction.•Improved decision tree algorithm has a high roughness classification performance.
[Display omitted]
An improved roughness measurement system is proposed that uses fiber Bragg gratings (FBGs) and machine learning. One sensor is a stylus profiler fabricated from FBG and silicone, and the other is a strain sensor fabricated from FBG. Eight statistical strain features of FBGs are extracted for intelligent sensing. Experimental results clearly showed that most strain features changed monotonically with the roughness and could be used individually to measure roughness. Roughness prediction and classification were realized with a polynomial regression algorithm using principal component analysis and a decision tree, respectively. The polynomial regression algorithm had a better performance compared with support vector regression. Corresponding optimized mean square error and coefficient of determination for the roughness prediction were 0.0035 µm and 0.9950, respectively. The macro-averaged F1 score for roughness classification after optimization was 0.98932.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2021.113161</doi><orcidid>https://orcid.org/0000-0002-3038-0257</orcidid><orcidid>https://orcid.org/0000-0002-5101-0503</orcidid><orcidid>https://orcid.org/0000-0002-5868-0972</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2021-12, Vol.332, p.113161, Article 113161 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_journals_2623046533 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Bragg gratings Classification Decision analysis Decision trees Feature extraction Fiber optics Machine learning Measurement methods Optimization Polynomials Principal components analysis Regression Regression analysis Roughness Sensors Statistical analysis Styli Support vector machines Surface roughness |
title | Improved roughness measurement method using fiber Bragg gratings and machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20roughness%20measurement%20method%20using%20fiber%20Bragg%20gratings%20and%20machine%20learning&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Ren,%20Naikui&rft.date=2021-12-01&rft.volume=332&rft.spage=113161&rft.pages=113161-&rft.artnum=113161&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2021.113161&rft_dat=%3Cproquest_cross%3E2623046533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623046533&rft_id=info:pmid/&rft_els_id=S0924424721006269&rfr_iscdi=true |