A highly flexible and stretchable ionic artificial muscle
•An ionic electroactive polymer based on polyvinyl alcohol was developed (PA-iEAP).•The PA-iEAP had excellent electromechanical properties and tensile properties.•A bionic grip is fabricated by observing the bending mechanism of mimosa. [Display omitted] It is well known that ionic electroactive pol...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2021-12, Vol.332, p.113190, Article 113190 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 113190 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 332 |
creator | Xu, Haoyan Han, Chuanlong Liu, Xi Li, Zhaoxin Liu, Jiuqing Sun, Zhuangzhi |
description | •An ionic electroactive polymer based on polyvinyl alcohol was developed (PA-iEAP).•The PA-iEAP had excellent electromechanical properties and tensile properties.•A bionic grip is fabricated by observing the bending mechanism of mimosa.
[Display omitted]
It is well known that ionic electroactive polymer (iEAP)-like artificial muscles with a faster response, greater strength and better tensile strength are critical to improve the electromechanical properties and expand their applications in wearable devices, soft sensors and actuators. Recently, polyvinyl alcohol (PA) hydrogels have greatly attracted attention because of their good tensile properties and biocompatibility. Thus, an ionic electroactive polymer with outstanding flexibility and excellent stretchability was developed based on the plasticizing treatment method by polyvinyl alcohol cross-linked with acrylamide in this work (PA-iEAP). The results showed that the tensile properties and electromechanical properties of PA-iEAP were greatly improved. Additionally, the output force and the peak deflection displacement of PA-iEAP reached 1.6 and 2.73 times those without plasticizing treatment, respectively. A bionic grip fabricated by PA-iEAP imitating mimosa was demonstrated. This work illustrated a kind of green ionic electroactive polymer with a simple method, low cost and outstanding tensile potential, which is very promising for improving the electromechanical properties of artificial muscles in the biomedical field and bionic robotics. |
doi_str_mv | 10.1016/j.sna.2021.113190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2623046344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424721006531</els_id><sourcerecordid>2623046344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ab75968e5e245e8fe9f2e016c6575d5f3a75bdfa97fcba6ababee55bb52436a63</originalsourceid><addsrcrecordid>eNqNkMlKBDEQhoMoOC4P4K3Bo_SYPd14ksENBrzoOSTpipOh7dYk4_L2ZujBo3iqKvi_quJD6IzgOcFEXq7naTBziimZE8JIi_fQjDSK1QzLdh_NcEt5zSlXh-gopTXGmDGlZqi9rlbhZdV_V76Hr2B7qMzQVSlHyG5ltnMYh-AqE3PwwQXTV6-b5Ho4QQfe9AlOd_UYPd_ePC3u6-Xj3cPielk7RkWujVWilQ0IoFxA46H1FMrHTgolOuGZUcJ23rTKO2ukscYCCGGtoJxJI9kxOp_2vsXxfQMp6_W4iUM5qamkDHPJOC8pMqVcHFOK4PVbDK8mfmuC9daQXutiSG8N6clQYS4m5hPs6JMLMDj45YoiRVnDlSod3l5o_p9ehGxyEbcYN0Mu6NWEQvH0ESDqHd6FCC7rbgx_vPkDYuOOsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623046344</pqid></control><display><type>article</type><title>A highly flexible and stretchable ionic artificial muscle</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Haoyan ; Han, Chuanlong ; Liu, Xi ; Li, Zhaoxin ; Liu, Jiuqing ; Sun, Zhuangzhi</creator><creatorcontrib>Xu, Haoyan ; Han, Chuanlong ; Liu, Xi ; Li, Zhaoxin ; Liu, Jiuqing ; Sun, Zhuangzhi</creatorcontrib><description>•An ionic electroactive polymer based on polyvinyl alcohol was developed (PA-iEAP).•The PA-iEAP had excellent electromechanical properties and tensile properties.•A bionic grip is fabricated by observing the bending mechanism of mimosa.
[Display omitted]
It is well known that ionic electroactive polymer (iEAP)-like artificial muscles with a faster response, greater strength and better tensile strength are critical to improve the electromechanical properties and expand their applications in wearable devices, soft sensors and actuators. Recently, polyvinyl alcohol (PA) hydrogels have greatly attracted attention because of their good tensile properties and biocompatibility. Thus, an ionic electroactive polymer with outstanding flexibility and excellent stretchability was developed based on the plasticizing treatment method by polyvinyl alcohol cross-linked with acrylamide in this work (PA-iEAP). The results showed that the tensile properties and electromechanical properties of PA-iEAP were greatly improved. Additionally, the output force and the peak deflection displacement of PA-iEAP reached 1.6 and 2.73 times those without plasticizing treatment, respectively. A bionic grip fabricated by PA-iEAP imitating mimosa was demonstrated. This work illustrated a kind of green ionic electroactive polymer with a simple method, low cost and outstanding tensile potential, which is very promising for improving the electromechanical properties of artificial muscles in the biomedical field and bionic robotics.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2021.113190</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Acrylamide ; Actuators ; Artificial muscle ; Artificial muscles ; Automation ; Biocompatibility ; Bionics ; Electroactive polymers ; Engineering ; Engineering, Electrical & Electronic ; Hydrogels ; Instruments & Instrumentation ; Ionic ; Manufacturing engineering ; Mechanical properties ; Microstructure ; Mimosa ; Polymers ; Polyvinyl alcohol ; Robotics ; Science & Technology ; Stretchability ; Technology ; Tensile properties ; Tensile strength ; Wearable technology</subject><ispartof>Sensors and actuators. A. Physical., 2021-12, Vol.332, p.113190, Article 113190</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Dec 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000723847700004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c325t-ab75968e5e245e8fe9f2e016c6575d5f3a75bdfa97fcba6ababee55bb52436a63</citedby><cites>FETCH-LOGICAL-c325t-ab75968e5e245e8fe9f2e016c6575d5f3a75bdfa97fcba6ababee55bb52436a63</cites><orcidid>0000-0003-0028-2426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2021.113190$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Xu, Haoyan</creatorcontrib><creatorcontrib>Han, Chuanlong</creatorcontrib><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Li, Zhaoxin</creatorcontrib><creatorcontrib>Liu, Jiuqing</creatorcontrib><creatorcontrib>Sun, Zhuangzhi</creatorcontrib><title>A highly flexible and stretchable ionic artificial muscle</title><title>Sensors and actuators. A. Physical.</title><addtitle>SENSOR ACTUAT A-PHYS</addtitle><description>•An ionic electroactive polymer based on polyvinyl alcohol was developed (PA-iEAP).•The PA-iEAP had excellent electromechanical properties and tensile properties.•A bionic grip is fabricated by observing the bending mechanism of mimosa.
[Display omitted]
It is well known that ionic electroactive polymer (iEAP)-like artificial muscles with a faster response, greater strength and better tensile strength are critical to improve the electromechanical properties and expand their applications in wearable devices, soft sensors and actuators. Recently, polyvinyl alcohol (PA) hydrogels have greatly attracted attention because of their good tensile properties and biocompatibility. Thus, an ionic electroactive polymer with outstanding flexibility and excellent stretchability was developed based on the plasticizing treatment method by polyvinyl alcohol cross-linked with acrylamide in this work (PA-iEAP). The results showed that the tensile properties and electromechanical properties of PA-iEAP were greatly improved. Additionally, the output force and the peak deflection displacement of PA-iEAP reached 1.6 and 2.73 times those without plasticizing treatment, respectively. A bionic grip fabricated by PA-iEAP imitating mimosa was demonstrated. This work illustrated a kind of green ionic electroactive polymer with a simple method, low cost and outstanding tensile potential, which is very promising for improving the electromechanical properties of artificial muscles in the biomedical field and bionic robotics.</description><subject>Acrylamide</subject><subject>Actuators</subject><subject>Artificial muscle</subject><subject>Artificial muscles</subject><subject>Automation</subject><subject>Biocompatibility</subject><subject>Bionics</subject><subject>Electroactive polymers</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Hydrogels</subject><subject>Instruments & Instrumentation</subject><subject>Ionic</subject><subject>Manufacturing engineering</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Mimosa</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Robotics</subject><subject>Science & Technology</subject><subject>Stretchability</subject><subject>Technology</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Wearable technology</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMlKBDEQhoMoOC4P4K3Bo_SYPd14ksENBrzoOSTpipOh7dYk4_L2ZujBo3iqKvi_quJD6IzgOcFEXq7naTBziimZE8JIi_fQjDSK1QzLdh_NcEt5zSlXh-gopTXGmDGlZqi9rlbhZdV_V76Hr2B7qMzQVSlHyG5ltnMYh-AqE3PwwQXTV6-b5Ho4QQfe9AlOd_UYPd_ePC3u6-Xj3cPielk7RkWujVWilQ0IoFxA46H1FMrHTgolOuGZUcJ23rTKO2ukscYCCGGtoJxJI9kxOp_2vsXxfQMp6_W4iUM5qamkDHPJOC8pMqVcHFOK4PVbDK8mfmuC9daQXutiSG8N6clQYS4m5hPs6JMLMDj45YoiRVnDlSod3l5o_p9ehGxyEbcYN0Mu6NWEQvH0ESDqHd6FCC7rbgx_vPkDYuOOsA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Xu, Haoyan</creator><creator>Han, Chuanlong</creator><creator>Liu, Xi</creator><creator>Li, Zhaoxin</creator><creator>Liu, Jiuqing</creator><creator>Sun, Zhuangzhi</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier BV</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0028-2426</orcidid></search><sort><creationdate>20211201</creationdate><title>A highly flexible and stretchable ionic artificial muscle</title><author>Xu, Haoyan ; Han, Chuanlong ; Liu, Xi ; Li, Zhaoxin ; Liu, Jiuqing ; Sun, Zhuangzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ab75968e5e245e8fe9f2e016c6575d5f3a75bdfa97fcba6ababee55bb52436a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acrylamide</topic><topic>Actuators</topic><topic>Artificial muscle</topic><topic>Artificial muscles</topic><topic>Automation</topic><topic>Biocompatibility</topic><topic>Bionics</topic><topic>Electroactive polymers</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Hydrogels</topic><topic>Instruments & Instrumentation</topic><topic>Ionic</topic><topic>Manufacturing engineering</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Mimosa</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Robotics</topic><topic>Science & Technology</topic><topic>Stretchability</topic><topic>Technology</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Haoyan</creatorcontrib><creatorcontrib>Han, Chuanlong</creatorcontrib><creatorcontrib>Liu, Xi</creatorcontrib><creatorcontrib>Li, Zhaoxin</creatorcontrib><creatorcontrib>Liu, Jiuqing</creatorcontrib><creatorcontrib>Sun, Zhuangzhi</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Haoyan</au><au>Han, Chuanlong</au><au>Liu, Xi</au><au>Li, Zhaoxin</au><au>Liu, Jiuqing</au><au>Sun, Zhuangzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly flexible and stretchable ionic artificial muscle</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><stitle>SENSOR ACTUAT A-PHYS</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>332</volume><spage>113190</spage><pages>113190-</pages><artnum>113190</artnum><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>•An ionic electroactive polymer based on polyvinyl alcohol was developed (PA-iEAP).•The PA-iEAP had excellent electromechanical properties and tensile properties.•A bionic grip is fabricated by observing the bending mechanism of mimosa.
[Display omitted]
It is well known that ionic electroactive polymer (iEAP)-like artificial muscles with a faster response, greater strength and better tensile strength are critical to improve the electromechanical properties and expand their applications in wearable devices, soft sensors and actuators. Recently, polyvinyl alcohol (PA) hydrogels have greatly attracted attention because of their good tensile properties and biocompatibility. Thus, an ionic electroactive polymer with outstanding flexibility and excellent stretchability was developed based on the plasticizing treatment method by polyvinyl alcohol cross-linked with acrylamide in this work (PA-iEAP). The results showed that the tensile properties and electromechanical properties of PA-iEAP were greatly improved. Additionally, the output force and the peak deflection displacement of PA-iEAP reached 1.6 and 2.73 times those without plasticizing treatment, respectively. A bionic grip fabricated by PA-iEAP imitating mimosa was demonstrated. This work illustrated a kind of green ionic electroactive polymer with a simple method, low cost and outstanding tensile potential, which is very promising for improving the electromechanical properties of artificial muscles in the biomedical field and bionic robotics.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2021.113190</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0028-2426</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2021-12, Vol.332, p.113190, Article 113190 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_journals_2623046344 |
source | Access via ScienceDirect (Elsevier) |
subjects | Acrylamide Actuators Artificial muscle Artificial muscles Automation Biocompatibility Bionics Electroactive polymers Engineering Engineering, Electrical & Electronic Hydrogels Instruments & Instrumentation Ionic Manufacturing engineering Mechanical properties Microstructure Mimosa Polymers Polyvinyl alcohol Robotics Science & Technology Stretchability Technology Tensile properties Tensile strength Wearable technology |
title | A highly flexible and stretchable ionic artificial muscle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20flexible%20and%20stretchable%20ionic%20artificial%20muscle&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Xu,%20Haoyan&rft.date=2021-12-01&rft.volume=332&rft.spage=113190&rft.pages=113190-&rft.artnum=113190&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2021.113190&rft_dat=%3Cproquest_webof%3E2623046344%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623046344&rft_id=info:pmid/&rft_els_id=S0924424721006531&rfr_iscdi=true |