Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage

•Pre-oxidation strategy is proposed to regulate bituminous coal based hard carbon.•The introduced oxygen functional group is demonstrated to block the graphitization.•Na+ plateau capacity of obtained hard carbon is improved by the enlarged d-spacing.•Kinetics analysis demonstrates the enhanced Na+ d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2022-02, Vol.310, p.122072, Article 122072
Hauptverfasser: Lou, Zhuojia, Wang, Hua, Wu, Dongyang, Sun, Fei, Gao, Jihui, Lai, Xiaoyong, Zhao, Guangbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122072
container_title Fuel (Guildford)
container_volume 310
creator Lou, Zhuojia
Wang, Hua
Wu, Dongyang
Sun, Fei
Gao, Jihui
Lai, Xiaoyong
Zhao, Guangbo
description •Pre-oxidation strategy is proposed to regulate bituminous coal based hard carbon.•The introduced oxygen functional group is demonstrated to block the graphitization.•Na+ plateau capacity of obtained hard carbon is improved by the enlarged d-spacing.•Kinetics analysis demonstrates the enhanced Na+ diffusion in the hard carbon anode. Middle metamorphic coal has the advantages of high earth abundance and easily-adjusted aromatic units and thus is a feasible raw material for the development of functional carbon materials. For the preparation of high-performance Na+ storage hard carbon, the key is to inhibit the long-range graphitization of internal microcrystalline in coal structure during thermal conversion process. Herein, we introduce a simple gas/liquid-phase pre-oxidation procedure to graft oxygen-containing cross bonds into bituminous coal, by which the growth of long-range graphitization process during high-temperature carbonization can be suppressed and thereby enable the preparation of hard carbon with short-range microcrystalline distribution and enlarged interlayer distance of 0.38 ∼ 0.385 nm. Benefiting the regulated microcrystalline environment, the fabricated hard carbon anode delivers a high reversible capacity of 274.2 mAh g−1, which is 24 % higher than the carbon anode prepared without pre-oxidation treatment. Electrochemical kinetics analyses further reveal that the improved Na+ storage capacity mainly stems from the enhanced Na+ diffusion and intercalation into microcrystalline interlayers at the low voltage region, which is of significance for the construction of high energy–density full cell for practical applications.
doi_str_mv 10.1016/j.fuel.2021.122072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623043372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121019487</els_id><sourcerecordid>2623043372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-3a117ad3f92b6cb5773e71b7a6304d07ef0802583f82692e78f0b83180a7a8da3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKt_wFPA89Z82E0KXqT4BYoXPYdsMqkp202d7BYL_nhT1rOnubw3MzxCLjmbccbr6_UsDNDOBBN8xoVgShyRCddKVorP5TGZsEJVQtb8lJzlvGaMKT2_mZCf1-gwOdzn3rZt7IAirIbW9jF1NAXaxH7YxC4NmbpkW-oB4w48_bToqbPYFKzZ0y1Clb6jH73co-1htachIY2bLaaDkpOPw6YagYR2BefkJNg2w8XfnJKPh_v35VP18vb4vLx7qZwUuq-k5VxZL8NCNLVr5kpJULxRtpbsxjMFgWkm5loGLeqFAKUDa7TkmllltbdySq7GveWTrwFyb9ZpwK6cNKIWZYmUShRKjFQJkjNCMFuMG4t7w5k5VDZrc6hsDpXNWLlIt6ME5f9dBDTZRegc-IjgeuNT_E__BXQWh-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623043372</pqid></control><display><type>article</type><title>Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Lou, Zhuojia ; Wang, Hua ; Wu, Dongyang ; Sun, Fei ; Gao, Jihui ; Lai, Xiaoyong ; Zhao, Guangbo</creator><creatorcontrib>Lou, Zhuojia ; Wang, Hua ; Wu, Dongyang ; Sun, Fei ; Gao, Jihui ; Lai, Xiaoyong ; Zhao, Guangbo</creatorcontrib><description>•Pre-oxidation strategy is proposed to regulate bituminous coal based hard carbon.•The introduced oxygen functional group is demonstrated to block the graphitization.•Na+ plateau capacity of obtained hard carbon is improved by the enlarged d-spacing.•Kinetics analysis demonstrates the enhanced Na+ diffusion in the hard carbon anode. Middle metamorphic coal has the advantages of high earth abundance and easily-adjusted aromatic units and thus is a feasible raw material for the development of functional carbon materials. For the preparation of high-performance Na+ storage hard carbon, the key is to inhibit the long-range graphitization of internal microcrystalline in coal structure during thermal conversion process. Herein, we introduce a simple gas/liquid-phase pre-oxidation procedure to graft oxygen-containing cross bonds into bituminous coal, by which the growth of long-range graphitization process during high-temperature carbonization can be suppressed and thereby enable the preparation of hard carbon with short-range microcrystalline distribution and enlarged interlayer distance of 0.38 ∼ 0.385 nm. Benefiting the regulated microcrystalline environment, the fabricated hard carbon anode delivers a high reversible capacity of 274.2 mAh g−1, which is 24 % higher than the carbon anode prepared without pre-oxidation treatment. Electrochemical kinetics analyses further reveal that the improved Na+ storage capacity mainly stems from the enhanced Na+ diffusion and intercalation into microcrystalline interlayers at the low voltage region, which is of significance for the construction of high energy–density full cell for practical applications.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.122072</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anodes ; Anodizing ; Bituminous coal ; Carbon ; Carbon anode ; Coal ; Electrochemistry ; Graphitization ; High temperature ; Interlayers ; Ion storage ; Liquid phases ; Low voltage ; Microcrystalline ; Oxidation ; Pre-oxidation ; Reaction kinetics ; Sodium ; Sodium ion battery ; Storage capacity</subject><ispartof>Fuel (Guildford), 2022-02, Vol.310, p.122072, Article 122072</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-3a117ad3f92b6cb5773e71b7a6304d07ef0802583f82692e78f0b83180a7a8da3</citedby><cites>FETCH-LOGICAL-c328t-3a117ad3f92b6cb5773e71b7a6304d07ef0802583f82692e78f0b83180a7a8da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2021.122072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Lou, Zhuojia</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Wu, Dongyang</creatorcontrib><creatorcontrib>Sun, Fei</creatorcontrib><creatorcontrib>Gao, Jihui</creatorcontrib><creatorcontrib>Lai, Xiaoyong</creatorcontrib><creatorcontrib>Zhao, Guangbo</creatorcontrib><title>Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage</title><title>Fuel (Guildford)</title><description>•Pre-oxidation strategy is proposed to regulate bituminous coal based hard carbon.•The introduced oxygen functional group is demonstrated to block the graphitization.•Na+ plateau capacity of obtained hard carbon is improved by the enlarged d-spacing.•Kinetics analysis demonstrates the enhanced Na+ diffusion in the hard carbon anode. Middle metamorphic coal has the advantages of high earth abundance and easily-adjusted aromatic units and thus is a feasible raw material for the development of functional carbon materials. For the preparation of high-performance Na+ storage hard carbon, the key is to inhibit the long-range graphitization of internal microcrystalline in coal structure during thermal conversion process. Herein, we introduce a simple gas/liquid-phase pre-oxidation procedure to graft oxygen-containing cross bonds into bituminous coal, by which the growth of long-range graphitization process during high-temperature carbonization can be suppressed and thereby enable the preparation of hard carbon with short-range microcrystalline distribution and enlarged interlayer distance of 0.38 ∼ 0.385 nm. Benefiting the regulated microcrystalline environment, the fabricated hard carbon anode delivers a high reversible capacity of 274.2 mAh g−1, which is 24 % higher than the carbon anode prepared without pre-oxidation treatment. Electrochemical kinetics analyses further reveal that the improved Na+ storage capacity mainly stems from the enhanced Na+ diffusion and intercalation into microcrystalline interlayers at the low voltage region, which is of significance for the construction of high energy–density full cell for practical applications.</description><subject>Anodes</subject><subject>Anodizing</subject><subject>Bituminous coal</subject><subject>Carbon</subject><subject>Carbon anode</subject><subject>Coal</subject><subject>Electrochemistry</subject><subject>Graphitization</subject><subject>High temperature</subject><subject>Interlayers</subject><subject>Ion storage</subject><subject>Liquid phases</subject><subject>Low voltage</subject><subject>Microcrystalline</subject><subject>Oxidation</subject><subject>Pre-oxidation</subject><subject>Reaction kinetics</subject><subject>Sodium</subject><subject>Sodium ion battery</subject><subject>Storage capacity</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKt_wFPA89Z82E0KXqT4BYoXPYdsMqkp202d7BYL_nhT1rOnubw3MzxCLjmbccbr6_UsDNDOBBN8xoVgShyRCddKVorP5TGZsEJVQtb8lJzlvGaMKT2_mZCf1-gwOdzn3rZt7IAirIbW9jF1NAXaxH7YxC4NmbpkW-oB4w48_bToqbPYFKzZ0y1Clb6jH73co-1htachIY2bLaaDkpOPw6YagYR2BefkJNg2w8XfnJKPh_v35VP18vb4vLx7qZwUuq-k5VxZL8NCNLVr5kpJULxRtpbsxjMFgWkm5loGLeqFAKUDa7TkmllltbdySq7GveWTrwFyb9ZpwK6cNKIWZYmUShRKjFQJkjNCMFuMG4t7w5k5VDZrc6hsDpXNWLlIt6ME5f9dBDTZRegc-IjgeuNT_E__BXQWh-k</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Lou, Zhuojia</creator><creator>Wang, Hua</creator><creator>Wu, Dongyang</creator><creator>Sun, Fei</creator><creator>Gao, Jihui</creator><creator>Lai, Xiaoyong</creator><creator>Zhao, Guangbo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20220215</creationdate><title>Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage</title><author>Lou, Zhuojia ; Wang, Hua ; Wu, Dongyang ; Sun, Fei ; Gao, Jihui ; Lai, Xiaoyong ; Zhao, Guangbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-3a117ad3f92b6cb5773e71b7a6304d07ef0802583f82692e78f0b83180a7a8da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Anodizing</topic><topic>Bituminous coal</topic><topic>Carbon</topic><topic>Carbon anode</topic><topic>Coal</topic><topic>Electrochemistry</topic><topic>Graphitization</topic><topic>High temperature</topic><topic>Interlayers</topic><topic>Ion storage</topic><topic>Liquid phases</topic><topic>Low voltage</topic><topic>Microcrystalline</topic><topic>Oxidation</topic><topic>Pre-oxidation</topic><topic>Reaction kinetics</topic><topic>Sodium</topic><topic>Sodium ion battery</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Zhuojia</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><creatorcontrib>Wu, Dongyang</creatorcontrib><creatorcontrib>Sun, Fei</creatorcontrib><creatorcontrib>Gao, Jihui</creatorcontrib><creatorcontrib>Lai, Xiaoyong</creatorcontrib><creatorcontrib>Zhao, Guangbo</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Zhuojia</au><au>Wang, Hua</au><au>Wu, Dongyang</au><au>Sun, Fei</au><au>Gao, Jihui</au><au>Lai, Xiaoyong</au><au>Zhao, Guangbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage</atitle><jtitle>Fuel (Guildford)</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>310</volume><spage>122072</spage><pages>122072-</pages><artnum>122072</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Pre-oxidation strategy is proposed to regulate bituminous coal based hard carbon.•The introduced oxygen functional group is demonstrated to block the graphitization.•Na+ plateau capacity of obtained hard carbon is improved by the enlarged d-spacing.•Kinetics analysis demonstrates the enhanced Na+ diffusion in the hard carbon anode. Middle metamorphic coal has the advantages of high earth abundance and easily-adjusted aromatic units and thus is a feasible raw material for the development of functional carbon materials. For the preparation of high-performance Na+ storage hard carbon, the key is to inhibit the long-range graphitization of internal microcrystalline in coal structure during thermal conversion process. Herein, we introduce a simple gas/liquid-phase pre-oxidation procedure to graft oxygen-containing cross bonds into bituminous coal, by which the growth of long-range graphitization process during high-temperature carbonization can be suppressed and thereby enable the preparation of hard carbon with short-range microcrystalline distribution and enlarged interlayer distance of 0.38 ∼ 0.385 nm. Benefiting the regulated microcrystalline environment, the fabricated hard carbon anode delivers a high reversible capacity of 274.2 mAh g−1, which is 24 % higher than the carbon anode prepared without pre-oxidation treatment. Electrochemical kinetics analyses further reveal that the improved Na+ storage capacity mainly stems from the enhanced Na+ diffusion and intercalation into microcrystalline interlayers at the low voltage region, which is of significance for the construction of high energy–density full cell for practical applications.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.122072</doi></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2022-02, Vol.310, p.122072, Article 122072
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2623043372
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Anodes
Anodizing
Bituminous coal
Carbon
Carbon anode
Coal
Electrochemistry
Graphitization
High temperature
Interlayers
Ion storage
Liquid phases
Low voltage
Microcrystalline
Oxidation
Pre-oxidation
Reaction kinetics
Sodium
Sodium ion battery
Storage capacity
title Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microcrystalline%20regulation%20of%20bituminous%20coal%20derived%20hard%20carbon%20by%20pre-oxidation%20strategy%20for%20improved%20sodium-ion%20storage&rft.jtitle=Fuel%20(Guildford)&rft.au=Lou,%20Zhuojia&rft.date=2022-02-15&rft.volume=310&rft.spage=122072&rft.pages=122072-&rft.artnum=122072&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.122072&rft_dat=%3Cproquest_cross%3E2623043372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623043372&rft_id=info:pmid/&rft_els_id=S0016236121019487&rfr_iscdi=true