Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1
[Display omitted] •Support carriers were optimized for biohydrogen augmentation.•Cell adsorption method is highly efficient in comparison to cell entrapment.•Foam was the best carrier for higher cell density adsorption.•The highest biohydrogen production was reported as 138 mL/30 mL using foam carri...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2022-02, Vol.310, p.122275, Article 122275 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122275 |
container_title | Fuel (Guildford) |
container_volume | 310 |
creator | Rai, Priya Pandey, Ashutosh Pandey, Anjana |
description | [Display omitted]
•Support carriers were optimized for biohydrogen augmentation.•Cell adsorption method is highly efficient in comparison to cell entrapment.•Foam was the best carrier for higher cell density adsorption.•The highest biohydrogen production was reported as 138 mL/30 mL using foam carrier.•The highest hydrogen yield was achieved as 2.07 mol/mol of glucose using a foam carrier.
In this study, the impact of immobilized (cell adsorbed and cell entrapped) matrices or beads on biohydrogen production potential has been reported. The novelty of this research is to investigate the impact of natural waste matrices or carriers (coconut coir-CC, wood shaving-WS) and low cost carriers (foam-FM, and alginate) on biohydrogen production potential. The study for dark fermentation process was performed for 2 days with four batch tests using cell adsorption method and six batch tests using cell entrapment method at initial pH (6.5), and temperature 38 ± 2 °C temperature. Cell adsorbed solid matrices reported maximum biohydrogen potential results as 62 ± 5.6 mL H2/30 mL (control), 138 mL ± 7 mL H2/30 mL (foam), 103.75 ± 6.7 mL H2/30 mL (coconut coir), and 96 ± 6.36 mL H2/30 mL (wood shaving). In cell entrapment, alginate supplemented TiO2-NP reported results as 32 mL ± 2.8/30 mL (control- 0 TiO2 mg/L), 35 ± 2.4 mL/30 mL (200 TiO2 mg/L), 40 ± 2.8 mL/30 mL (400 TiO2 mg/L), 53 ± 4 mL/30 mL (600 TiO2 mg/L), 75 ± 4.2 mL/30 mL (800 TiO2 mg/L), and 93 ± 3 mL/30 mL (1000 TiO2 mg/L) respectively. The SEM observation displayed that foam was the best carrier for high cell adhesion on its surface in comparison to other carriers due to surface characteristics. The current study achieved maximum yield 2.07 mol/mol of glucose using foam carrier. Majorly, acetic acid followed by butyric acid is analyzed as by-products at the end of dark fermentation. |
doi_str_mv | 10.1016/j.fuel.2021.122275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623042902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121021499</els_id><sourcerecordid>2623042902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7db7cfef06cb48ec37462ce26bf9bbdc2cdd132a722059f7483ae0de02fc52183</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EEkvhD3CyxDnBHidxVuJSqvIhVYIDnC3HHm9nSeJgO63K7-AHk9WicuM0h3med0YvY6-lqKWQ3dtjHVYcaxAgawkAun3CdrLXqtKyVU_ZTmxUBaqTz9mLnI9CCN23zY79vr6z42oLxZnHwMd4z13MhdM0xYFG-oWe53VZYip8siWRw8xp5nY9TDiXR3GgePvgUzzgzJdYthXZ8QR6m37wgOkfvaS4hWS-ZpoP_H3NR3K3OFOIaaLML7_Kl-xZsGPGV3_nBfv-4frb1afq5svHz1eXN5VT0JdK-0G7gEF0bmh6dEo3HTiEbgj7YfAOnPdSgdUAot0H3fTKovAoILgWZK8u2Jtz7vbSzxVzMce4pnk7aaADJRrYC9goOFMuxZwTBrMkmmx6MFKYU_vmaE7tm1P75tz-Jr07S7j9f0eYTHaEs0NPCV0xPtL_9D8d9pHD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623042902</pqid></control><display><type>article</type><title>Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rai, Priya ; Pandey, Ashutosh ; Pandey, Anjana</creator><creatorcontrib>Rai, Priya ; Pandey, Ashutosh ; Pandey, Anjana</creatorcontrib><description>[Display omitted]
•Support carriers were optimized for biohydrogen augmentation.•Cell adsorption method is highly efficient in comparison to cell entrapment.•Foam was the best carrier for higher cell density adsorption.•The highest biohydrogen production was reported as 138 mL/30 mL using foam carrier.•The highest hydrogen yield was achieved as 2.07 mol/mol of glucose using a foam carrier.
In this study, the impact of immobilized (cell adsorbed and cell entrapped) matrices or beads on biohydrogen production potential has been reported. The novelty of this research is to investigate the impact of natural waste matrices or carriers (coconut coir-CC, wood shaving-WS) and low cost carriers (foam-FM, and alginate) on biohydrogen production potential. The study for dark fermentation process was performed for 2 days with four batch tests using cell adsorption method and six batch tests using cell entrapment method at initial pH (6.5), and temperature 38 ± 2 °C temperature. Cell adsorbed solid matrices reported maximum biohydrogen potential results as 62 ± 5.6 mL H2/30 mL (control), 138 mL ± 7 mL H2/30 mL (foam), 103.75 ± 6.7 mL H2/30 mL (coconut coir), and 96 ± 6.36 mL H2/30 mL (wood shaving). In cell entrapment, alginate supplemented TiO2-NP reported results as 32 mL ± 2.8/30 mL (control- 0 TiO2 mg/L), 35 ± 2.4 mL/30 mL (200 TiO2 mg/L), 40 ± 2.8 mL/30 mL (400 TiO2 mg/L), 53 ± 4 mL/30 mL (600 TiO2 mg/L), 75 ± 4.2 mL/30 mL (800 TiO2 mg/L), and 93 ± 3 mL/30 mL (1000 TiO2 mg/L) respectively. The SEM observation displayed that foam was the best carrier for high cell adhesion on its surface in comparison to other carriers due to surface characteristics. The current study achieved maximum yield 2.07 mol/mol of glucose using foam carrier. Majorly, acetic acid followed by butyric acid is analyzed as by-products at the end of dark fermentation.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.122275</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetic acid ; Alginates ; Alginic acid ; B. licheniformis AP1 ; Beads ; Biohydrogen ; Butyric acid ; Cell adhesion ; Cell immobilization ; Clean fuel production ; Coir ; Dark fermentation ; Entrapment ; Fermentation ; Low cost ; Nanoparticle ; Shavings ; Surface properties ; Titanium dioxide ; Transcription factors ; Volatile fatty acids ; Wood</subject><ispartof>Fuel (Guildford), 2022-02, Vol.310, p.122275, Article 122275</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-7db7cfef06cb48ec37462ce26bf9bbdc2cdd132a722059f7483ae0de02fc52183</citedby><cites>FETCH-LOGICAL-c328t-7db7cfef06cb48ec37462ce26bf9bbdc2cdd132a722059f7483ae0de02fc52183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2021.122275$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Rai, Priya</creatorcontrib><creatorcontrib>Pandey, Ashutosh</creatorcontrib><creatorcontrib>Pandey, Anjana</creatorcontrib><title>Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1</title><title>Fuel (Guildford)</title><description>[Display omitted]
•Support carriers were optimized for biohydrogen augmentation.•Cell adsorption method is highly efficient in comparison to cell entrapment.•Foam was the best carrier for higher cell density adsorption.•The highest biohydrogen production was reported as 138 mL/30 mL using foam carrier.•The highest hydrogen yield was achieved as 2.07 mol/mol of glucose using a foam carrier.
In this study, the impact of immobilized (cell adsorbed and cell entrapped) matrices or beads on biohydrogen production potential has been reported. The novelty of this research is to investigate the impact of natural waste matrices or carriers (coconut coir-CC, wood shaving-WS) and low cost carriers (foam-FM, and alginate) on biohydrogen production potential. The study for dark fermentation process was performed for 2 days with four batch tests using cell adsorption method and six batch tests using cell entrapment method at initial pH (6.5), and temperature 38 ± 2 °C temperature. Cell adsorbed solid matrices reported maximum biohydrogen potential results as 62 ± 5.6 mL H2/30 mL (control), 138 mL ± 7 mL H2/30 mL (foam), 103.75 ± 6.7 mL H2/30 mL (coconut coir), and 96 ± 6.36 mL H2/30 mL (wood shaving). In cell entrapment, alginate supplemented TiO2-NP reported results as 32 mL ± 2.8/30 mL (control- 0 TiO2 mg/L), 35 ± 2.4 mL/30 mL (200 TiO2 mg/L), 40 ± 2.8 mL/30 mL (400 TiO2 mg/L), 53 ± 4 mL/30 mL (600 TiO2 mg/L), 75 ± 4.2 mL/30 mL (800 TiO2 mg/L), and 93 ± 3 mL/30 mL (1000 TiO2 mg/L) respectively. The SEM observation displayed that foam was the best carrier for high cell adhesion on its surface in comparison to other carriers due to surface characteristics. The current study achieved maximum yield 2.07 mol/mol of glucose using foam carrier. Majorly, acetic acid followed by butyric acid is analyzed as by-products at the end of dark fermentation.</description><subject>Acetic acid</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>B. licheniformis AP1</subject><subject>Beads</subject><subject>Biohydrogen</subject><subject>Butyric acid</subject><subject>Cell adhesion</subject><subject>Cell immobilization</subject><subject>Clean fuel production</subject><subject>Coir</subject><subject>Dark fermentation</subject><subject>Entrapment</subject><subject>Fermentation</subject><subject>Low cost</subject><subject>Nanoparticle</subject><subject>Shavings</subject><subject>Surface properties</subject><subject>Titanium dioxide</subject><subject>Transcription factors</subject><subject>Volatile fatty acids</subject><subject>Wood</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EEkvhD3CyxDnBHidxVuJSqvIhVYIDnC3HHm9nSeJgO63K7-AHk9WicuM0h3med0YvY6-lqKWQ3dtjHVYcaxAgawkAun3CdrLXqtKyVU_ZTmxUBaqTz9mLnI9CCN23zY79vr6z42oLxZnHwMd4z13MhdM0xYFG-oWe53VZYip8siWRw8xp5nY9TDiXR3GgePvgUzzgzJdYthXZ8QR6m37wgOkfvaS4hWS-ZpoP_H3NR3K3OFOIaaLML7_Kl-xZsGPGV3_nBfv-4frb1afq5svHz1eXN5VT0JdK-0G7gEF0bmh6dEo3HTiEbgj7YfAOnPdSgdUAot0H3fTKovAoILgWZK8u2Jtz7vbSzxVzMce4pnk7aaADJRrYC9goOFMuxZwTBrMkmmx6MFKYU_vmaE7tm1P75tz-Jr07S7j9f0eYTHaEs0NPCV0xPtL_9D8d9pHD</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Rai, Priya</creator><creator>Pandey, Ashutosh</creator><creator>Pandey, Anjana</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20220215</creationdate><title>Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1</title><author>Rai, Priya ; Pandey, Ashutosh ; Pandey, Anjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7db7cfef06cb48ec37462ce26bf9bbdc2cdd132a722059f7483ae0de02fc52183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>B. licheniformis AP1</topic><topic>Beads</topic><topic>Biohydrogen</topic><topic>Butyric acid</topic><topic>Cell adhesion</topic><topic>Cell immobilization</topic><topic>Clean fuel production</topic><topic>Coir</topic><topic>Dark fermentation</topic><topic>Entrapment</topic><topic>Fermentation</topic><topic>Low cost</topic><topic>Nanoparticle</topic><topic>Shavings</topic><topic>Surface properties</topic><topic>Titanium dioxide</topic><topic>Transcription factors</topic><topic>Volatile fatty acids</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rai, Priya</creatorcontrib><creatorcontrib>Pandey, Ashutosh</creatorcontrib><creatorcontrib>Pandey, Anjana</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rai, Priya</au><au>Pandey, Ashutosh</au><au>Pandey, Anjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1</atitle><jtitle>Fuel (Guildford)</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>310</volume><spage>122275</spage><pages>122275-</pages><artnum>122275</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•Support carriers were optimized for biohydrogen augmentation.•Cell adsorption method is highly efficient in comparison to cell entrapment.•Foam was the best carrier for higher cell density adsorption.•The highest biohydrogen production was reported as 138 mL/30 mL using foam carrier.•The highest hydrogen yield was achieved as 2.07 mol/mol of glucose using a foam carrier.
In this study, the impact of immobilized (cell adsorbed and cell entrapped) matrices or beads on biohydrogen production potential has been reported. The novelty of this research is to investigate the impact of natural waste matrices or carriers (coconut coir-CC, wood shaving-WS) and low cost carriers (foam-FM, and alginate) on biohydrogen production potential. The study for dark fermentation process was performed for 2 days with four batch tests using cell adsorption method and six batch tests using cell entrapment method at initial pH (6.5), and temperature 38 ± 2 °C temperature. Cell adsorbed solid matrices reported maximum biohydrogen potential results as 62 ± 5.6 mL H2/30 mL (control), 138 mL ± 7 mL H2/30 mL (foam), 103.75 ± 6.7 mL H2/30 mL (coconut coir), and 96 ± 6.36 mL H2/30 mL (wood shaving). In cell entrapment, alginate supplemented TiO2-NP reported results as 32 mL ± 2.8/30 mL (control- 0 TiO2 mg/L), 35 ± 2.4 mL/30 mL (200 TiO2 mg/L), 40 ± 2.8 mL/30 mL (400 TiO2 mg/L), 53 ± 4 mL/30 mL (600 TiO2 mg/L), 75 ± 4.2 mL/30 mL (800 TiO2 mg/L), and 93 ± 3 mL/30 mL (1000 TiO2 mg/L) respectively. The SEM observation displayed that foam was the best carrier for high cell adhesion on its surface in comparison to other carriers due to surface characteristics. The current study achieved maximum yield 2.07 mol/mol of glucose using foam carrier. Majorly, acetic acid followed by butyric acid is analyzed as by-products at the end of dark fermentation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.122275</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2022-02, Vol.310, p.122275, Article 122275 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2623042902 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Acetic acid Alginates Alginic acid B. licheniformis AP1 Beads Biohydrogen Butyric acid Cell adhesion Cell immobilization Clean fuel production Coir Dark fermentation Entrapment Fermentation Low cost Nanoparticle Shavings Surface properties Titanium dioxide Transcription factors Volatile fatty acids Wood |
title | Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20low%20cost%20immobilized%20support%20matrices%20in%20augmentation%20of%20biohydrogen%20potential%20in%20dark%20fermentation%20process%20using%20B.%20licheniformis%20AP1&rft.jtitle=Fuel%20(Guildford)&rft.au=Rai,%20Priya&rft.date=2022-02-15&rft.volume=310&rft.spage=122275&rft.pages=122275-&rft.artnum=122275&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.122275&rft_dat=%3Cproquest_cross%3E2623042902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623042902&rft_id=info:pmid/&rft_els_id=S0016236121021499&rfr_iscdi=true |