Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1

[Display omitted] •Support carriers were optimized for biohydrogen augmentation.•Cell adsorption method is highly efficient in comparison to cell entrapment.•Foam was the best carrier for higher cell density adsorption.•The highest biohydrogen production was reported as 138 mL/30 mL using foam carri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2022-02, Vol.310, p.122275, Article 122275
Hauptverfasser: Rai, Priya, Pandey, Ashutosh, Pandey, Anjana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122275
container_title Fuel (Guildford)
container_volume 310
creator Rai, Priya
Pandey, Ashutosh
Pandey, Anjana
description [Display omitted] •Support carriers were optimized for biohydrogen augmentation.•Cell adsorption method is highly efficient in comparison to cell entrapment.•Foam was the best carrier for higher cell density adsorption.•The highest biohydrogen production was reported as 138 mL/30 mL using foam carrier.•The highest hydrogen yield was achieved as 2.07 mol/mol of glucose using a foam carrier. In this study, the impact of immobilized (cell adsorbed and cell entrapped) matrices or beads on biohydrogen production potential has been reported. The novelty of this research is to investigate the impact of natural waste matrices or carriers (coconut coir-CC, wood shaving-WS) and low cost carriers (foam-FM, and alginate) on biohydrogen production potential. The study for dark fermentation process was performed for 2 days with four batch tests using cell adsorption method and six batch tests using cell entrapment method at initial pH (6.5), and temperature 38 ± 2 °C temperature. Cell adsorbed solid matrices reported maximum biohydrogen potential results as 62 ± 5.6 mL H2/30 mL (control), 138 mL ± 7 mL H2/30 mL (foam), 103.75 ± 6.7 mL H2/30 mL (coconut coir), and 96 ± 6.36 mL H2/30 mL (wood shaving). In cell entrapment, alginate supplemented TiO2-NP reported results as 32 mL ± 2.8/30 mL (control- 0 TiO2 mg/L), 35 ± 2.4 mL/30 mL (200 TiO2 mg/L), 40 ± 2.8 mL/30 mL (400 TiO2 mg/L), 53 ± 4 mL/30 mL (600 TiO2 mg/L), 75 ± 4.2 mL/30 mL (800 TiO2 mg/L), and 93 ± 3 mL/30 mL (1000 TiO2 mg/L) respectively. The SEM observation displayed that foam was the best carrier for high cell adhesion on its surface in comparison to other carriers due to surface characteristics. The current study achieved maximum yield 2.07 mol/mol of glucose using foam carrier. Majorly, acetic acid followed by butyric acid is analyzed as by-products at the end of dark fermentation.
doi_str_mv 10.1016/j.fuel.2021.122275
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623042902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236121021499</els_id><sourcerecordid>2623042902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7db7cfef06cb48ec37462ce26bf9bbdc2cdd132a722059f7483ae0de02fc52183</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EEkvhD3CyxDnBHidxVuJSqvIhVYIDnC3HHm9nSeJgO63K7-AHk9WicuM0h3med0YvY6-lqKWQ3dtjHVYcaxAgawkAun3CdrLXqtKyVU_ZTmxUBaqTz9mLnI9CCN23zY79vr6z42oLxZnHwMd4z13MhdM0xYFG-oWe53VZYip8siWRw8xp5nY9TDiXR3GgePvgUzzgzJdYthXZ8QR6m37wgOkfvaS4hWS-ZpoP_H3NR3K3OFOIaaLML7_Kl-xZsGPGV3_nBfv-4frb1afq5svHz1eXN5VT0JdK-0G7gEF0bmh6dEo3HTiEbgj7YfAOnPdSgdUAot0H3fTKovAoILgWZK8u2Jtz7vbSzxVzMce4pnk7aaADJRrYC9goOFMuxZwTBrMkmmx6MFKYU_vmaE7tm1P75tz-Jr07S7j9f0eYTHaEs0NPCV0xPtL_9D8d9pHD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623042902</pqid></control><display><type>article</type><title>Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rai, Priya ; Pandey, Ashutosh ; Pandey, Anjana</creator><creatorcontrib>Rai, Priya ; Pandey, Ashutosh ; Pandey, Anjana</creatorcontrib><description>[Display omitted] •Support carriers were optimized for biohydrogen augmentation.•Cell adsorption method is highly efficient in comparison to cell entrapment.•Foam was the best carrier for higher cell density adsorption.•The highest biohydrogen production was reported as 138 mL/30 mL using foam carrier.•The highest hydrogen yield was achieved as 2.07 mol/mol of glucose using a foam carrier. In this study, the impact of immobilized (cell adsorbed and cell entrapped) matrices or beads on biohydrogen production potential has been reported. The novelty of this research is to investigate the impact of natural waste matrices or carriers (coconut coir-CC, wood shaving-WS) and low cost carriers (foam-FM, and alginate) on biohydrogen production potential. The study for dark fermentation process was performed for 2 days with four batch tests using cell adsorption method and six batch tests using cell entrapment method at initial pH (6.5), and temperature 38 ± 2 °C temperature. Cell adsorbed solid matrices reported maximum biohydrogen potential results as 62 ± 5.6 mL H2/30 mL (control), 138 mL ± 7 mL H2/30 mL (foam), 103.75 ± 6.7 mL H2/30 mL (coconut coir), and 96 ± 6.36 mL H2/30 mL (wood shaving). In cell entrapment, alginate supplemented TiO2-NP reported results as 32 mL ± 2.8/30 mL (control- 0 TiO2 mg/L), 35 ± 2.4 mL/30 mL (200 TiO2 mg/L), 40 ± 2.8 mL/30 mL (400 TiO2 mg/L), 53 ± 4 mL/30 mL (600 TiO2 mg/L), 75 ± 4.2 mL/30 mL (800 TiO2 mg/L), and 93 ± 3 mL/30 mL (1000 TiO2 mg/L) respectively. The SEM observation displayed that foam was the best carrier for high cell adhesion on its surface in comparison to other carriers due to surface characteristics. The current study achieved maximum yield 2.07 mol/mol of glucose using foam carrier. Majorly, acetic acid followed by butyric acid is analyzed as by-products at the end of dark fermentation.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2021.122275</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetic acid ; Alginates ; Alginic acid ; B. licheniformis AP1 ; Beads ; Biohydrogen ; Butyric acid ; Cell adhesion ; Cell immobilization ; Clean fuel production ; Coir ; Dark fermentation ; Entrapment ; Fermentation ; Low cost ; Nanoparticle ; Shavings ; Surface properties ; Titanium dioxide ; Transcription factors ; Volatile fatty acids ; Wood</subject><ispartof>Fuel (Guildford), 2022-02, Vol.310, p.122275, Article 122275</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-7db7cfef06cb48ec37462ce26bf9bbdc2cdd132a722059f7483ae0de02fc52183</citedby><cites>FETCH-LOGICAL-c328t-7db7cfef06cb48ec37462ce26bf9bbdc2cdd132a722059f7483ae0de02fc52183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2021.122275$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Rai, Priya</creatorcontrib><creatorcontrib>Pandey, Ashutosh</creatorcontrib><creatorcontrib>Pandey, Anjana</creatorcontrib><title>Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1</title><title>Fuel (Guildford)</title><description>[Display omitted] •Support carriers were optimized for biohydrogen augmentation.•Cell adsorption method is highly efficient in comparison to cell entrapment.•Foam was the best carrier for higher cell density adsorption.•The highest biohydrogen production was reported as 138 mL/30 mL using foam carrier.•The highest hydrogen yield was achieved as 2.07 mol/mol of glucose using a foam carrier. In this study, the impact of immobilized (cell adsorbed and cell entrapped) matrices or beads on biohydrogen production potential has been reported. The novelty of this research is to investigate the impact of natural waste matrices or carriers (coconut coir-CC, wood shaving-WS) and low cost carriers (foam-FM, and alginate) on biohydrogen production potential. The study for dark fermentation process was performed for 2 days with four batch tests using cell adsorption method and six batch tests using cell entrapment method at initial pH (6.5), and temperature 38 ± 2 °C temperature. Cell adsorbed solid matrices reported maximum biohydrogen potential results as 62 ± 5.6 mL H2/30 mL (control), 138 mL ± 7 mL H2/30 mL (foam), 103.75 ± 6.7 mL H2/30 mL (coconut coir), and 96 ± 6.36 mL H2/30 mL (wood shaving). In cell entrapment, alginate supplemented TiO2-NP reported results as 32 mL ± 2.8/30 mL (control- 0 TiO2 mg/L), 35 ± 2.4 mL/30 mL (200 TiO2 mg/L), 40 ± 2.8 mL/30 mL (400 TiO2 mg/L), 53 ± 4 mL/30 mL (600 TiO2 mg/L), 75 ± 4.2 mL/30 mL (800 TiO2 mg/L), and 93 ± 3 mL/30 mL (1000 TiO2 mg/L) respectively. The SEM observation displayed that foam was the best carrier for high cell adhesion on its surface in comparison to other carriers due to surface characteristics. The current study achieved maximum yield 2.07 mol/mol of glucose using foam carrier. Majorly, acetic acid followed by butyric acid is analyzed as by-products at the end of dark fermentation.</description><subject>Acetic acid</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>B. licheniformis AP1</subject><subject>Beads</subject><subject>Biohydrogen</subject><subject>Butyric acid</subject><subject>Cell adhesion</subject><subject>Cell immobilization</subject><subject>Clean fuel production</subject><subject>Coir</subject><subject>Dark fermentation</subject><subject>Entrapment</subject><subject>Fermentation</subject><subject>Low cost</subject><subject>Nanoparticle</subject><subject>Shavings</subject><subject>Surface properties</subject><subject>Titanium dioxide</subject><subject>Transcription factors</subject><subject>Volatile fatty acids</subject><subject>Wood</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EEkvhD3CyxDnBHidxVuJSqvIhVYIDnC3HHm9nSeJgO63K7-AHk9WicuM0h3med0YvY6-lqKWQ3dtjHVYcaxAgawkAun3CdrLXqtKyVU_ZTmxUBaqTz9mLnI9CCN23zY79vr6z42oLxZnHwMd4z13MhdM0xYFG-oWe53VZYip8siWRw8xp5nY9TDiXR3GgePvgUzzgzJdYthXZ8QR6m37wgOkfvaS4hWS-ZpoP_H3NR3K3OFOIaaLML7_Kl-xZsGPGV3_nBfv-4frb1afq5svHz1eXN5VT0JdK-0G7gEF0bmh6dEo3HTiEbgj7YfAOnPdSgdUAot0H3fTKovAoILgWZK8u2Jtz7vbSzxVzMce4pnk7aaADJRrYC9goOFMuxZwTBrMkmmx6MFKYU_vmaE7tm1P75tz-Jr07S7j9f0eYTHaEs0NPCV0xPtL_9D8d9pHD</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Rai, Priya</creator><creator>Pandey, Ashutosh</creator><creator>Pandey, Anjana</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20220215</creationdate><title>Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1</title><author>Rai, Priya ; Pandey, Ashutosh ; Pandey, Anjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7db7cfef06cb48ec37462ce26bf9bbdc2cdd132a722059f7483ae0de02fc52183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>B. licheniformis AP1</topic><topic>Beads</topic><topic>Biohydrogen</topic><topic>Butyric acid</topic><topic>Cell adhesion</topic><topic>Cell immobilization</topic><topic>Clean fuel production</topic><topic>Coir</topic><topic>Dark fermentation</topic><topic>Entrapment</topic><topic>Fermentation</topic><topic>Low cost</topic><topic>Nanoparticle</topic><topic>Shavings</topic><topic>Surface properties</topic><topic>Titanium dioxide</topic><topic>Transcription factors</topic><topic>Volatile fatty acids</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rai, Priya</creatorcontrib><creatorcontrib>Pandey, Ashutosh</creatorcontrib><creatorcontrib>Pandey, Anjana</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rai, Priya</au><au>Pandey, Ashutosh</au><au>Pandey, Anjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1</atitle><jtitle>Fuel (Guildford)</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>310</volume><spage>122275</spage><pages>122275-</pages><artnum>122275</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted] •Support carriers were optimized for biohydrogen augmentation.•Cell adsorption method is highly efficient in comparison to cell entrapment.•Foam was the best carrier for higher cell density adsorption.•The highest biohydrogen production was reported as 138 mL/30 mL using foam carrier.•The highest hydrogen yield was achieved as 2.07 mol/mol of glucose using a foam carrier. In this study, the impact of immobilized (cell adsorbed and cell entrapped) matrices or beads on biohydrogen production potential has been reported. The novelty of this research is to investigate the impact of natural waste matrices or carriers (coconut coir-CC, wood shaving-WS) and low cost carriers (foam-FM, and alginate) on biohydrogen production potential. The study for dark fermentation process was performed for 2 days with four batch tests using cell adsorption method and six batch tests using cell entrapment method at initial pH (6.5), and temperature 38 ± 2 °C temperature. Cell adsorbed solid matrices reported maximum biohydrogen potential results as 62 ± 5.6 mL H2/30 mL (control), 138 mL ± 7 mL H2/30 mL (foam), 103.75 ± 6.7 mL H2/30 mL (coconut coir), and 96 ± 6.36 mL H2/30 mL (wood shaving). In cell entrapment, alginate supplemented TiO2-NP reported results as 32 mL ± 2.8/30 mL (control- 0 TiO2 mg/L), 35 ± 2.4 mL/30 mL (200 TiO2 mg/L), 40 ± 2.8 mL/30 mL (400 TiO2 mg/L), 53 ± 4 mL/30 mL (600 TiO2 mg/L), 75 ± 4.2 mL/30 mL (800 TiO2 mg/L), and 93 ± 3 mL/30 mL (1000 TiO2 mg/L) respectively. The SEM observation displayed that foam was the best carrier for high cell adhesion on its surface in comparison to other carriers due to surface characteristics. The current study achieved maximum yield 2.07 mol/mol of glucose using foam carrier. Majorly, acetic acid followed by butyric acid is analyzed as by-products at the end of dark fermentation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2021.122275</doi></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2022-02, Vol.310, p.122275, Article 122275
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2623042902
source ScienceDirect Journals (5 years ago - present)
subjects Acetic acid
Alginates
Alginic acid
B. licheniformis AP1
Beads
Biohydrogen
Butyric acid
Cell adhesion
Cell immobilization
Clean fuel production
Coir
Dark fermentation
Entrapment
Fermentation
Low cost
Nanoparticle
Shavings
Surface properties
Titanium dioxide
Transcription factors
Volatile fatty acids
Wood
title Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis AP1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20low%20cost%20immobilized%20support%20matrices%20in%20augmentation%20of%20biohydrogen%20potential%20in%20dark%20fermentation%20process%20using%20B.%20licheniformis%20AP1&rft.jtitle=Fuel%20(Guildford)&rft.au=Rai,%20Priya&rft.date=2022-02-15&rft.volume=310&rft.spage=122275&rft.pages=122275-&rft.artnum=122275&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2021.122275&rft_dat=%3Cproquest_cross%3E2623042902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623042902&rft_id=info:pmid/&rft_els_id=S0016236121021499&rfr_iscdi=true