Hollow Ti3C2 MXene/Carbon Nanofibers as an Advanced Anode Material for Lithium‐Ion Batteries

Lithium‐ion batteries (LIBs) are rechargeable batteries that have attracted great interest as next‐generation energy storage devices that will lead future energy technologies because of their various excellent advantages. Two‐dimensional (2D) MXene‐based LIBs have been actively investigated because...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2022-01, Vol.9 (1), p.n/a
Hauptverfasser: Seo, Darae, Kim, Mee‐Ree, Kyu Song, Jin, Kim, Eunji, Koo, Jaseung, Kim, Ki‐Chul, Han, Hee, Lee, Yonghee, Won Ahn, Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title ChemElectroChem
container_volume 9
creator Seo, Darae
Kim, Mee‐Ree
Kyu Song, Jin
Kim, Eunji
Koo, Jaseung
Kim, Ki‐Chul
Han, Hee
Lee, Yonghee
Won Ahn, Chi
description Lithium‐ion batteries (LIBs) are rechargeable batteries that have attracted great interest as next‐generation energy storage devices that will lead future energy technologies because of their various excellent advantages. Two‐dimensional (2D) MXene‐based LIBs have been actively investigated because of their high energy/power density and good performance at high charge/discharge rates. However, three major limitations of 2D MXene electrodes – self‐stacking, low specific surface area, and disturbance of Li+ diffusion by surface terminations – have hindered the commercialization of MXene‐based LIBs. Herein, we fabricate 1D hollow Ti3C2Tx MXene/carbon (MX/C) nanofibers via an electrospinning process and use them as anode materials in LIBs. Compared with the pristine 2D MXene (MX) paste electrode and MXene/carbon (MX/C) paste electrode, the hollow MX/C nanofibers electrode exhibits a greater specific surface area, less self‐stacking of flakes, and surface functional groups tailored for LIBs. The LIBs based on the hollow electrode exhibit a higher energy density (306.5 mA h g−1 at 40 mA g−1) than those with the MX paste electrode (81.08 mA h g−1 at 40 mA g−1) and MX/C paste electrode (196.9 mA h g−1 at 40 mA g−1). In addition, the hollow MX/C nanofiber electrode shows a high reversible capacity, proving that it is a promising anode material for LIBs. In a spin: One‐dimensional hollow Ti3C2Tx MXene/carbon nanofibers are obtained by utilizing a electrospinning process. The hollow MX/C nanofibers with tailored surface terminations and an increased specific surface area show improved electrochemical performance in binder‐free Li‐ion batteries.
doi_str_mv 10.1002/celc.202101344
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2622943461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622943461</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2334-7a8866247cd7dc8925a2b5de0d01a86ed864e4ecee2b7dade88232b5bf7337ec3</originalsourceid><addsrcrecordid>eNpNkM9Kw0AQxhdRsNRePS94Trv_utkca6i2kOqlgieXTXaCW9Js3aSW3nwEn9EnMaFShIGZj_nmG_ghdEvJmBLCJgVUxZgRRgnlQlygAaOJjDotL__N12jUNBtCCKVkypUcoLeFryp_wGvHU4ZXr1DDJDUh9zV-MrUvXQ6hwaarGs_sp6kLsHhWewt4ZVoIzlS49AFnrn13--3P1_eyO703bb-D5gZdlaZqYPTXh-jlYb5OF1H2_LhMZ1m0Y5yLKDZKSclEXNjYFiphU8PyqQViCTVKglVSgIACgOWxNRaUYrxz5GXMeQwFH6K7U-4u-I89NK3e-H2ou5eaScYSwYWknSs5uQ6ugqPeBbc14agp0T1D3TPUZ4Y6nWfpWfFfiUpnmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622943461</pqid></control><display><type>article</type><title>Hollow Ti3C2 MXene/Carbon Nanofibers as an Advanced Anode Material for Lithium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Seo, Darae ; Kim, Mee‐Ree ; Kyu Song, Jin ; Kim, Eunji ; Koo, Jaseung ; Kim, Ki‐Chul ; Han, Hee ; Lee, Yonghee ; Won Ahn, Chi</creator><creatorcontrib>Seo, Darae ; Kim, Mee‐Ree ; Kyu Song, Jin ; Kim, Eunji ; Koo, Jaseung ; Kim, Ki‐Chul ; Han, Hee ; Lee, Yonghee ; Won Ahn, Chi</creatorcontrib><description>Lithium‐ion batteries (LIBs) are rechargeable batteries that have attracted great interest as next‐generation energy storage devices that will lead future energy technologies because of their various excellent advantages. Two‐dimensional (2D) MXene‐based LIBs have been actively investigated because of their high energy/power density and good performance at high charge/discharge rates. However, three major limitations of 2D MXene electrodes – self‐stacking, low specific surface area, and disturbance of Li+ diffusion by surface terminations – have hindered the commercialization of MXene‐based LIBs. Herein, we fabricate 1D hollow Ti3C2Tx MXene/carbon (MX/C) nanofibers via an electrospinning process and use them as anode materials in LIBs. Compared with the pristine 2D MXene (MX) paste electrode and MXene/carbon (MX/C) paste electrode, the hollow MX/C nanofibers electrode exhibits a greater specific surface area, less self‐stacking of flakes, and surface functional groups tailored for LIBs. The LIBs based on the hollow electrode exhibit a higher energy density (306.5 mA h g−1 at 40 mA g−1) than those with the MX paste electrode (81.08 mA h g−1 at 40 mA g−1) and MX/C paste electrode (196.9 mA h g−1 at 40 mA g−1). In addition, the hollow MX/C nanofiber electrode shows a high reversible capacity, proving that it is a promising anode material for LIBs. In a spin: One‐dimensional hollow Ti3C2Tx MXene/carbon nanofibers are obtained by utilizing a electrospinning process. The hollow MX/C nanofibers with tailored surface terminations and an increased specific surface area show improved electrochemical performance in binder‐free Li‐ion batteries.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.202101344</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Anodes ; Batteries ; Carbon ; Carbon fibers ; Commercialization ; Electrode materials ; Electrodes ; Electrospinning ; Energy storage ; Energy technology ; Flux density ; Functional groups ; Lithium ; Lithium-ion batteries ; MXenes ; Nanofibers ; Rechargeable batteries ; Specific surface ; Stacking ; Storage batteries ; Surface area</subject><ispartof>ChemElectroChem, 2022-01, Vol.9 (1), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9604-9356 ; 0000-0002-6665-4651 ; 0000-0002-1201-1431 ; 0000-0002-3646-0805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.202101344$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.202101344$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Seo, Darae</creatorcontrib><creatorcontrib>Kim, Mee‐Ree</creatorcontrib><creatorcontrib>Kyu Song, Jin</creatorcontrib><creatorcontrib>Kim, Eunji</creatorcontrib><creatorcontrib>Koo, Jaseung</creatorcontrib><creatorcontrib>Kim, Ki‐Chul</creatorcontrib><creatorcontrib>Han, Hee</creatorcontrib><creatorcontrib>Lee, Yonghee</creatorcontrib><creatorcontrib>Won Ahn, Chi</creatorcontrib><title>Hollow Ti3C2 MXene/Carbon Nanofibers as an Advanced Anode Material for Lithium‐Ion Batteries</title><title>ChemElectroChem</title><description>Lithium‐ion batteries (LIBs) are rechargeable batteries that have attracted great interest as next‐generation energy storage devices that will lead future energy technologies because of their various excellent advantages. Two‐dimensional (2D) MXene‐based LIBs have been actively investigated because of their high energy/power density and good performance at high charge/discharge rates. However, three major limitations of 2D MXene electrodes – self‐stacking, low specific surface area, and disturbance of Li+ diffusion by surface terminations – have hindered the commercialization of MXene‐based LIBs. Herein, we fabricate 1D hollow Ti3C2Tx MXene/carbon (MX/C) nanofibers via an electrospinning process and use them as anode materials in LIBs. Compared with the pristine 2D MXene (MX) paste electrode and MXene/carbon (MX/C) paste electrode, the hollow MX/C nanofibers electrode exhibits a greater specific surface area, less self‐stacking of flakes, and surface functional groups tailored for LIBs. The LIBs based on the hollow electrode exhibit a higher energy density (306.5 mA h g−1 at 40 mA g−1) than those with the MX paste electrode (81.08 mA h g−1 at 40 mA g−1) and MX/C paste electrode (196.9 mA h g−1 at 40 mA g−1). In addition, the hollow MX/C nanofiber electrode shows a high reversible capacity, proving that it is a promising anode material for LIBs. In a spin: One‐dimensional hollow Ti3C2Tx MXene/carbon nanofibers are obtained by utilizing a electrospinning process. The hollow MX/C nanofibers with tailored surface terminations and an increased specific surface area show improved electrochemical performance in binder‐free Li‐ion batteries.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Commercialization</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrospinning</subject><subject>Energy storage</subject><subject>Energy technology</subject><subject>Flux density</subject><subject>Functional groups</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>MXenes</subject><subject>Nanofibers</subject><subject>Rechargeable batteries</subject><subject>Specific surface</subject><subject>Stacking</subject><subject>Storage batteries</subject><subject>Surface area</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM9Kw0AQxhdRsNRePS94Trv_utkca6i2kOqlgieXTXaCW9Js3aSW3nwEn9EnMaFShIGZj_nmG_ghdEvJmBLCJgVUxZgRRgnlQlygAaOJjDotL__N12jUNBtCCKVkypUcoLeFryp_wGvHU4ZXr1DDJDUh9zV-MrUvXQ6hwaarGs_sp6kLsHhWewt4ZVoIzlS49AFnrn13--3P1_eyO703bb-D5gZdlaZqYPTXh-jlYb5OF1H2_LhMZ1m0Y5yLKDZKSclEXNjYFiphU8PyqQViCTVKglVSgIACgOWxNRaUYrxz5GXMeQwFH6K7U-4u-I89NK3e-H2ou5eaScYSwYWknSs5uQ6ugqPeBbc14agp0T1D3TPUZ4Y6nWfpWfFfiUpnmw</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Seo, Darae</creator><creator>Kim, Mee‐Ree</creator><creator>Kyu Song, Jin</creator><creator>Kim, Eunji</creator><creator>Koo, Jaseung</creator><creator>Kim, Ki‐Chul</creator><creator>Han, Hee</creator><creator>Lee, Yonghee</creator><creator>Won Ahn, Chi</creator><general>John Wiley &amp; Sons, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9604-9356</orcidid><orcidid>https://orcid.org/0000-0002-6665-4651</orcidid><orcidid>https://orcid.org/0000-0002-1201-1431</orcidid><orcidid>https://orcid.org/0000-0002-3646-0805</orcidid></search><sort><creationdate>20220114</creationdate><title>Hollow Ti3C2 MXene/Carbon Nanofibers as an Advanced Anode Material for Lithium‐Ion Batteries</title><author>Seo, Darae ; Kim, Mee‐Ree ; Kyu Song, Jin ; Kim, Eunji ; Koo, Jaseung ; Kim, Ki‐Chul ; Han, Hee ; Lee, Yonghee ; Won Ahn, Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2334-7a8866247cd7dc8925a2b5de0d01a86ed864e4ecee2b7dade88232b5bf7337ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Commercialization</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrospinning</topic><topic>Energy storage</topic><topic>Energy technology</topic><topic>Flux density</topic><topic>Functional groups</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>MXenes</topic><topic>Nanofibers</topic><topic>Rechargeable batteries</topic><topic>Specific surface</topic><topic>Stacking</topic><topic>Storage batteries</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Darae</creatorcontrib><creatorcontrib>Kim, Mee‐Ree</creatorcontrib><creatorcontrib>Kyu Song, Jin</creatorcontrib><creatorcontrib>Kim, Eunji</creatorcontrib><creatorcontrib>Koo, Jaseung</creatorcontrib><creatorcontrib>Kim, Ki‐Chul</creatorcontrib><creatorcontrib>Han, Hee</creatorcontrib><creatorcontrib>Lee, Yonghee</creatorcontrib><creatorcontrib>Won Ahn, Chi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Darae</au><au>Kim, Mee‐Ree</au><au>Kyu Song, Jin</au><au>Kim, Eunji</au><au>Koo, Jaseung</au><au>Kim, Ki‐Chul</au><au>Han, Hee</au><au>Lee, Yonghee</au><au>Won Ahn, Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow Ti3C2 MXene/Carbon Nanofibers as an Advanced Anode Material for Lithium‐Ion Batteries</atitle><jtitle>ChemElectroChem</jtitle><date>2022-01-14</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><epage>n/a</epage><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Lithium‐ion batteries (LIBs) are rechargeable batteries that have attracted great interest as next‐generation energy storage devices that will lead future energy technologies because of their various excellent advantages. Two‐dimensional (2D) MXene‐based LIBs have been actively investigated because of their high energy/power density and good performance at high charge/discharge rates. However, three major limitations of 2D MXene electrodes – self‐stacking, low specific surface area, and disturbance of Li+ diffusion by surface terminations – have hindered the commercialization of MXene‐based LIBs. Herein, we fabricate 1D hollow Ti3C2Tx MXene/carbon (MX/C) nanofibers via an electrospinning process and use them as anode materials in LIBs. Compared with the pristine 2D MXene (MX) paste electrode and MXene/carbon (MX/C) paste electrode, the hollow MX/C nanofibers electrode exhibits a greater specific surface area, less self‐stacking of flakes, and surface functional groups tailored for LIBs. The LIBs based on the hollow electrode exhibit a higher energy density (306.5 mA h g−1 at 40 mA g−1) than those with the MX paste electrode (81.08 mA h g−1 at 40 mA g−1) and MX/C paste electrode (196.9 mA h g−1 at 40 mA g−1). In addition, the hollow MX/C nanofiber electrode shows a high reversible capacity, proving that it is a promising anode material for LIBs. In a spin: One‐dimensional hollow Ti3C2Tx MXene/carbon nanofibers are obtained by utilizing a electrospinning process. The hollow MX/C nanofibers with tailored surface terminations and an increased specific surface area show improved electrochemical performance in binder‐free Li‐ion batteries.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.202101344</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9604-9356</orcidid><orcidid>https://orcid.org/0000-0002-6665-4651</orcidid><orcidid>https://orcid.org/0000-0002-1201-1431</orcidid><orcidid>https://orcid.org/0000-0002-3646-0805</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2022-01, Vol.9 (1), p.n/a
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2622943461
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Batteries
Carbon
Carbon fibers
Commercialization
Electrode materials
Electrodes
Electrospinning
Energy storage
Energy technology
Flux density
Functional groups
Lithium
Lithium-ion batteries
MXenes
Nanofibers
Rechargeable batteries
Specific surface
Stacking
Storage batteries
Surface area
title Hollow Ti3C2 MXene/Carbon Nanofibers as an Advanced Anode Material for Lithium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20Ti3C2%20MXene/Carbon%20Nanofibers%20as%20an%20Advanced%20Anode%20Material%20for%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=ChemElectroChem&rft.au=Seo,%20Darae&rft.date=2022-01-14&rft.volume=9&rft.issue=1&rft.epage=n/a&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.202101344&rft_dat=%3Cproquest_wiley%3E2622943461%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622943461&rft_id=info:pmid/&rfr_iscdi=true