Comparison of Evaluation Metrics for Landmark Detection in CMR Images

Cardiac Magnetic Resonance (CMR) images are widely used for cardiac diagnosis and ventricular assessment. Extracting specific landmarks like the right ventricular insertion points is of importance for spatial alignment and 3D modeling. The automatic detection of such landmarks has been tackled by mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-01
Hauptverfasser: Koehler, Sven, Sharan, Lalith, Kuhm, Julian, Ghanaat, Arman, Gordejeva, Jelizaveta, Simon, Nike K, Grell, Niko M, André, Florian, Engelhardt, Sandy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Koehler, Sven
Sharan, Lalith
Kuhm, Julian
Ghanaat, Arman
Gordejeva, Jelizaveta
Simon, Nike K
Grell, Niko M
André, Florian
Engelhardt, Sandy
description Cardiac Magnetic Resonance (CMR) images are widely used for cardiac diagnosis and ventricular assessment. Extracting specific landmarks like the right ventricular insertion points is of importance for spatial alignment and 3D modeling. The automatic detection of such landmarks has been tackled by multiple groups using Deep Learning, but relatively little attention has been paid to the failure cases of evaluation metrics in this field. In this work, we extended the public ACDC dataset with additional labels of the right ventricular insertion points and compare different variants of a heatmap-based landmark detection pipeline. In this comparison, we demonstrate very likely pitfalls of apparently simple detection and localisation metrics which highlights the importance of a clear detection strategy and the definition of an upper limit for localisation-based metrics. Our preliminary results indicate that a combination of different metrics is necessary, as they yield different winners for method comparison. Additionally, they highlight the need of a comprehensive metric description and evaluation standardisation, especially for the error cases where no metrics could be computed or where no lower/upper boundary of a metric exists. Code and labels: https://github.com/Cardio-AI/rvip_landmark_detection
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2622854684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622854684</sourcerecordid><originalsourceid>FETCH-proquest_journals_26228546843</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_eNBZsLdq3s0oyEt0l4etsaa7tm_t-5PoAzoNw8xCBCjlLsoTxJUImbs4jjHbY5rKQJSFHUZymq0B20L5pn4ir2erlHe6YWitgwuZ-0DuCQflVfPN2kBRXeE80EPxRixb6lmFP67F9ljeilM0OvuaFPu6s5Mzc6oxQ8zTJMsT-d_1ATyHOkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622854684</pqid></control><display><type>article</type><title>Comparison of Evaluation Metrics for Landmark Detection in CMR Images</title><source>Free E- Journals</source><creator>Koehler, Sven ; Sharan, Lalith ; Kuhm, Julian ; Ghanaat, Arman ; Gordejeva, Jelizaveta ; Simon, Nike K ; Grell, Niko M ; André, Florian ; Engelhardt, Sandy</creator><creatorcontrib>Koehler, Sven ; Sharan, Lalith ; Kuhm, Julian ; Ghanaat, Arman ; Gordejeva, Jelizaveta ; Simon, Nike K ; Grell, Niko M ; André, Florian ; Engelhardt, Sandy</creatorcontrib><description>Cardiac Magnetic Resonance (CMR) images are widely used for cardiac diagnosis and ventricular assessment. Extracting specific landmarks like the right ventricular insertion points is of importance for spatial alignment and 3D modeling. The automatic detection of such landmarks has been tackled by multiple groups using Deep Learning, but relatively little attention has been paid to the failure cases of evaluation metrics in this field. In this work, we extended the public ACDC dataset with additional labels of the right ventricular insertion points and compare different variants of a heatmap-based landmark detection pipeline. In this comparison, we demonstrate very likely pitfalls of apparently simple detection and localisation metrics which highlights the importance of a clear detection strategy and the definition of an upper limit for localisation-based metrics. Our preliminary results indicate that a combination of different metrics is necessary, as they yield different winners for method comparison. Additionally, they highlight the need of a comprehensive metric description and evaluation standardisation, especially for the error cases where no metrics could be computed or where no lower/upper boundary of a metric exists. Code and labels: https://github.com/Cardio-AI/rvip_landmark_detection</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Evaluation ; Insertion ; Labels ; Localization ; Magnetic resonance ; Three dimensional models</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Koehler, Sven</creatorcontrib><creatorcontrib>Sharan, Lalith</creatorcontrib><creatorcontrib>Kuhm, Julian</creatorcontrib><creatorcontrib>Ghanaat, Arman</creatorcontrib><creatorcontrib>Gordejeva, Jelizaveta</creatorcontrib><creatorcontrib>Simon, Nike K</creatorcontrib><creatorcontrib>Grell, Niko M</creatorcontrib><creatorcontrib>André, Florian</creatorcontrib><creatorcontrib>Engelhardt, Sandy</creatorcontrib><title>Comparison of Evaluation Metrics for Landmark Detection in CMR Images</title><title>arXiv.org</title><description>Cardiac Magnetic Resonance (CMR) images are widely used for cardiac diagnosis and ventricular assessment. Extracting specific landmarks like the right ventricular insertion points is of importance for spatial alignment and 3D modeling. The automatic detection of such landmarks has been tackled by multiple groups using Deep Learning, but relatively little attention has been paid to the failure cases of evaluation metrics in this field. In this work, we extended the public ACDC dataset with additional labels of the right ventricular insertion points and compare different variants of a heatmap-based landmark detection pipeline. In this comparison, we demonstrate very likely pitfalls of apparently simple detection and localisation metrics which highlights the importance of a clear detection strategy and the definition of an upper limit for localisation-based metrics. Our preliminary results indicate that a combination of different metrics is necessary, as they yield different winners for method comparison. Additionally, they highlight the need of a comprehensive metric description and evaluation standardisation, especially for the error cases where no metrics could be computed or where no lower/upper boundary of a metric exists. Code and labels: https://github.com/Cardio-AI/rvip_landmark_detection</description><subject>Evaluation</subject><subject>Insertion</subject><subject>Labels</subject><subject>Localization</subject><subject>Magnetic resonance</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAUAJcgSMp_eNBZsLdq3s0oyEt0l4etsaa7tm_t-5PoAzoNw8xCBCjlLsoTxJUImbs4jjHbY5rKQJSFHUZymq0B20L5pn4ir2erlHe6YWitgwuZ-0DuCQflVfPN2kBRXeE80EPxRixb6lmFP67F9ljeilM0OvuaFPu6s5Mzc6oxQ8zTJMsT-d_1ATyHOkY</recordid><startdate>20220128</startdate><enddate>20220128</enddate><creator>Koehler, Sven</creator><creator>Sharan, Lalith</creator><creator>Kuhm, Julian</creator><creator>Ghanaat, Arman</creator><creator>Gordejeva, Jelizaveta</creator><creator>Simon, Nike K</creator><creator>Grell, Niko M</creator><creator>André, Florian</creator><creator>Engelhardt, Sandy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220128</creationdate><title>Comparison of Evaluation Metrics for Landmark Detection in CMR Images</title><author>Koehler, Sven ; Sharan, Lalith ; Kuhm, Julian ; Ghanaat, Arman ; Gordejeva, Jelizaveta ; Simon, Nike K ; Grell, Niko M ; André, Florian ; Engelhardt, Sandy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26228546843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Evaluation</topic><topic>Insertion</topic><topic>Labels</topic><topic>Localization</topic><topic>Magnetic resonance</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Koehler, Sven</creatorcontrib><creatorcontrib>Sharan, Lalith</creatorcontrib><creatorcontrib>Kuhm, Julian</creatorcontrib><creatorcontrib>Ghanaat, Arman</creatorcontrib><creatorcontrib>Gordejeva, Jelizaveta</creatorcontrib><creatorcontrib>Simon, Nike K</creatorcontrib><creatorcontrib>Grell, Niko M</creatorcontrib><creatorcontrib>André, Florian</creatorcontrib><creatorcontrib>Engelhardt, Sandy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koehler, Sven</au><au>Sharan, Lalith</au><au>Kuhm, Julian</au><au>Ghanaat, Arman</au><au>Gordejeva, Jelizaveta</au><au>Simon, Nike K</au><au>Grell, Niko M</au><au>André, Florian</au><au>Engelhardt, Sandy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comparison of Evaluation Metrics for Landmark Detection in CMR Images</atitle><jtitle>arXiv.org</jtitle><date>2022-01-28</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Cardiac Magnetic Resonance (CMR) images are widely used for cardiac diagnosis and ventricular assessment. Extracting specific landmarks like the right ventricular insertion points is of importance for spatial alignment and 3D modeling. The automatic detection of such landmarks has been tackled by multiple groups using Deep Learning, but relatively little attention has been paid to the failure cases of evaluation metrics in this field. In this work, we extended the public ACDC dataset with additional labels of the right ventricular insertion points and compare different variants of a heatmap-based landmark detection pipeline. In this comparison, we demonstrate very likely pitfalls of apparently simple detection and localisation metrics which highlights the importance of a clear detection strategy and the definition of an upper limit for localisation-based metrics. Our preliminary results indicate that a combination of different metrics is necessary, as they yield different winners for method comparison. Additionally, they highlight the need of a comprehensive metric description and evaluation standardisation, especially for the error cases where no metrics could be computed or where no lower/upper boundary of a metric exists. Code and labels: https://github.com/Cardio-AI/rvip_landmark_detection</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2622854684
source Free E- Journals
subjects Evaluation
Insertion
Labels
Localization
Magnetic resonance
Three dimensional models
title Comparison of Evaluation Metrics for Landmark Detection in CMR Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comparison%20of%20Evaluation%20Metrics%20for%20Landmark%20Detection%20in%20CMR%20Images&rft.jtitle=arXiv.org&rft.au=Koehler,%20Sven&rft.date=2022-01-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2622854684%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622854684&rft_id=info:pmid/&rfr_iscdi=true