Impact of Si doping on dislocation behavior in MOVPE-grown AlN on high-temperature annealed AlN buffer layers

In this work, we compare the defect structure in unintentionally doped and Si-doped AlN layers grown by metalorganic vapor phase epitaxy (MOVPE) on high-temperature annealed (HTA) sputtered AlN templates on sapphire substrates. Since the HTA process leads to a reduction of the in-plane lattice const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-01, Vol.131 (4)
Hauptverfasser: Mogilatenko, A., Walde, S., Hagedorn, S., Netzel, C., Huang, C.-Y., Weyers, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of applied physics
container_volume 131
creator Mogilatenko, A.
Walde, S.
Hagedorn, S.
Netzel, C.
Huang, C.-Y.
Weyers, M.
description In this work, we compare the defect structure in unintentionally doped and Si-doped AlN layers grown by metalorganic vapor phase epitaxy (MOVPE) on high-temperature annealed (HTA) sputtered AlN templates on sapphire substrates. Since the HTA process leads to a reduction of the in-plane lattice constant of the AlN layers, further homoepitaxial overgrowth results in compressively strained AlN layers. With increasing MOVPE-AlN layer thickness, strain relaxation takes place mostly by formation of dislocation half-loops of an irregular shape, which accumulate at the homoepitaxial MOVPE-AlN/HTA-AlN interface. We suggest that these dislocations nucleate at the layer surface and move down to the homoepitaxial interface at high temperatures. The formation of these irregular and hardly controllable defects can be avoided by introduction of Si-doping into the MOVPE-AlN layers. Si-doping enlarges the inclination of threading dislocation lines stemming from the HTA-AlN template, producing an alternative mechanism for strain relaxation.
doi_str_mv 10.1063/5.0073076
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2622843212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622843212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b402ec6091edbcad4ab4dc5c126e284a2f6635a0124ac60454df55ab2a0f19ac3</originalsourceid><addsrcrecordid>eNqd0EtLAzEUBeAgCtbqwn8QcKUwNY_JPJal-ChUK_jYhjuZpE2ZTsZkptJ_7_QB7l3du_g4Bw5C15SMKEn4vRgRknKSJidoQEmWR6kQ5BQNCGE0yvI0P0cXIawIoTTj-QCtp-sGVIudwe8Wl66x9QK7Gpc2VE5Ba_u_0EvYWOexrfHL_OvtIVp491PjcfW6o0u7WEatXjfaQ9t5jaGuNVS63IOiM0Z7XMFW-3CJzgxUQV8d7xB9Pj58TJ6j2fxpOhnPIsUT1kZFTJhWCcmpLgsFZQxFXCqhKEs0y2JgJkm4AEJZDD2LRVwaIaBgQAzNQfEhujnkNt59dzq0cuU6X_eVkiWsj-CMsl7dHpTyLgSvjWy8XYPfSkrkbk0p5HHN3t4dbFC23c_yP7xx_g_KpjT8F-lRgvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622843212</pqid></control><display><type>article</type><title>Impact of Si doping on dislocation behavior in MOVPE-grown AlN on high-temperature annealed AlN buffer layers</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mogilatenko, A. ; Walde, S. ; Hagedorn, S. ; Netzel, C. ; Huang, C.-Y. ; Weyers, M.</creator><creatorcontrib>Mogilatenko, A. ; Walde, S. ; Hagedorn, S. ; Netzel, C. ; Huang, C.-Y. ; Weyers, M.</creatorcontrib><description>In this work, we compare the defect structure in unintentionally doped and Si-doped AlN layers grown by metalorganic vapor phase epitaxy (MOVPE) on high-temperature annealed (HTA) sputtered AlN templates on sapphire substrates. Since the HTA process leads to a reduction of the in-plane lattice constant of the AlN layers, further homoepitaxial overgrowth results in compressively strained AlN layers. With increasing MOVPE-AlN layer thickness, strain relaxation takes place mostly by formation of dislocation half-loops of an irregular shape, which accumulate at the homoepitaxial MOVPE-AlN/HTA-AlN interface. We suggest that these dislocations nucleate at the layer surface and move down to the homoepitaxial interface at high temperatures. The formation of these irregular and hardly controllable defects can be avoided by introduction of Si-doping into the MOVPE-AlN layers. Si-doping enlarges the inclination of threading dislocation lines stemming from the HTA-AlN template, producing an alternative mechanism for strain relaxation.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0073076</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Annealing ; Buffer layers ; Dislocation loops ; Doping ; Epitaxial growth ; High temperature ; Lattice parameters ; Metalorganic chemical vapor deposition ; Sapphire ; Silicon ; Strain relaxation ; Substrates ; Thickness ; Threading dislocations ; Vapor phase epitaxy ; Vapor phases</subject><ispartof>Journal of applied physics, 2022-01, Vol.131 (4)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-b402ec6091edbcad4ab4dc5c126e284a2f6635a0124ac60454df55ab2a0f19ac3</citedby><cites>FETCH-LOGICAL-c362t-b402ec6091edbcad4ab4dc5c126e284a2f6635a0124ac60454df55ab2a0f19ac3</cites><orcidid>0000-0002-8432-1105 ; 0000-0003-0844-1903 ; 0000-0001-7431-4166 ; 0000-0001-6252-9426 ; 0000-0001-7260-0791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0073076$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Mogilatenko, A.</creatorcontrib><creatorcontrib>Walde, S.</creatorcontrib><creatorcontrib>Hagedorn, S.</creatorcontrib><creatorcontrib>Netzel, C.</creatorcontrib><creatorcontrib>Huang, C.-Y.</creatorcontrib><creatorcontrib>Weyers, M.</creatorcontrib><title>Impact of Si doping on dislocation behavior in MOVPE-grown AlN on high-temperature annealed AlN buffer layers</title><title>Journal of applied physics</title><description>In this work, we compare the defect structure in unintentionally doped and Si-doped AlN layers grown by metalorganic vapor phase epitaxy (MOVPE) on high-temperature annealed (HTA) sputtered AlN templates on sapphire substrates. Since the HTA process leads to a reduction of the in-plane lattice constant of the AlN layers, further homoepitaxial overgrowth results in compressively strained AlN layers. With increasing MOVPE-AlN layer thickness, strain relaxation takes place mostly by formation of dislocation half-loops of an irregular shape, which accumulate at the homoepitaxial MOVPE-AlN/HTA-AlN interface. We suggest that these dislocations nucleate at the layer surface and move down to the homoepitaxial interface at high temperatures. The formation of these irregular and hardly controllable defects can be avoided by introduction of Si-doping into the MOVPE-AlN layers. Si-doping enlarges the inclination of threading dislocation lines stemming from the HTA-AlN template, producing an alternative mechanism for strain relaxation.</description><subject>Annealing</subject><subject>Buffer layers</subject><subject>Dislocation loops</subject><subject>Doping</subject><subject>Epitaxial growth</subject><subject>High temperature</subject><subject>Lattice parameters</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Sapphire</subject><subject>Silicon</subject><subject>Strain relaxation</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Threading dislocations</subject><subject>Vapor phase epitaxy</subject><subject>Vapor phases</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEUBeAgCtbqwn8QcKUwNY_JPJal-ChUK_jYhjuZpE2ZTsZkptJ_7_QB7l3du_g4Bw5C15SMKEn4vRgRknKSJidoQEmWR6kQ5BQNCGE0yvI0P0cXIawIoTTj-QCtp-sGVIudwe8Wl66x9QK7Gpc2VE5Ba_u_0EvYWOexrfHL_OvtIVp491PjcfW6o0u7WEatXjfaQ9t5jaGuNVS63IOiM0Z7XMFW-3CJzgxUQV8d7xB9Pj58TJ6j2fxpOhnPIsUT1kZFTJhWCcmpLgsFZQxFXCqhKEs0y2JgJkm4AEJZDD2LRVwaIaBgQAzNQfEhujnkNt59dzq0cuU6X_eVkiWsj-CMsl7dHpTyLgSvjWy8XYPfSkrkbk0p5HHN3t4dbFC23c_yP7xx_g_KpjT8F-lRgvQ</recordid><startdate>20220131</startdate><enddate>20220131</enddate><creator>Mogilatenko, A.</creator><creator>Walde, S.</creator><creator>Hagedorn, S.</creator><creator>Netzel, C.</creator><creator>Huang, C.-Y.</creator><creator>Weyers, M.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8432-1105</orcidid><orcidid>https://orcid.org/0000-0003-0844-1903</orcidid><orcidid>https://orcid.org/0000-0001-7431-4166</orcidid><orcidid>https://orcid.org/0000-0001-6252-9426</orcidid><orcidid>https://orcid.org/0000-0001-7260-0791</orcidid></search><sort><creationdate>20220131</creationdate><title>Impact of Si doping on dislocation behavior in MOVPE-grown AlN on high-temperature annealed AlN buffer layers</title><author>Mogilatenko, A. ; Walde, S. ; Hagedorn, S. ; Netzel, C. ; Huang, C.-Y. ; Weyers, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b402ec6091edbcad4ab4dc5c126e284a2f6635a0124ac60454df55ab2a0f19ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annealing</topic><topic>Buffer layers</topic><topic>Dislocation loops</topic><topic>Doping</topic><topic>Epitaxial growth</topic><topic>High temperature</topic><topic>Lattice parameters</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Sapphire</topic><topic>Silicon</topic><topic>Strain relaxation</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Threading dislocations</topic><topic>Vapor phase epitaxy</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mogilatenko, A.</creatorcontrib><creatorcontrib>Walde, S.</creatorcontrib><creatorcontrib>Hagedorn, S.</creatorcontrib><creatorcontrib>Netzel, C.</creatorcontrib><creatorcontrib>Huang, C.-Y.</creatorcontrib><creatorcontrib>Weyers, M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mogilatenko, A.</au><au>Walde, S.</au><au>Hagedorn, S.</au><au>Netzel, C.</au><au>Huang, C.-Y.</au><au>Weyers, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Si doping on dislocation behavior in MOVPE-grown AlN on high-temperature annealed AlN buffer layers</atitle><jtitle>Journal of applied physics</jtitle><date>2022-01-31</date><risdate>2022</risdate><volume>131</volume><issue>4</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this work, we compare the defect structure in unintentionally doped and Si-doped AlN layers grown by metalorganic vapor phase epitaxy (MOVPE) on high-temperature annealed (HTA) sputtered AlN templates on sapphire substrates. Since the HTA process leads to a reduction of the in-plane lattice constant of the AlN layers, further homoepitaxial overgrowth results in compressively strained AlN layers. With increasing MOVPE-AlN layer thickness, strain relaxation takes place mostly by formation of dislocation half-loops of an irregular shape, which accumulate at the homoepitaxial MOVPE-AlN/HTA-AlN interface. We suggest that these dislocations nucleate at the layer surface and move down to the homoepitaxial interface at high temperatures. The formation of these irregular and hardly controllable defects can be avoided by introduction of Si-doping into the MOVPE-AlN layers. Si-doping enlarges the inclination of threading dislocation lines stemming from the HTA-AlN template, producing an alternative mechanism for strain relaxation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0073076</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8432-1105</orcidid><orcidid>https://orcid.org/0000-0003-0844-1903</orcidid><orcidid>https://orcid.org/0000-0001-7431-4166</orcidid><orcidid>https://orcid.org/0000-0001-6252-9426</orcidid><orcidid>https://orcid.org/0000-0001-7260-0791</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-01, Vol.131 (4)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2622843212
source AIP Journals Complete; Alma/SFX Local Collection
subjects Annealing
Buffer layers
Dislocation loops
Doping
Epitaxial growth
High temperature
Lattice parameters
Metalorganic chemical vapor deposition
Sapphire
Silicon
Strain relaxation
Substrates
Thickness
Threading dislocations
Vapor phase epitaxy
Vapor phases
title Impact of Si doping on dislocation behavior in MOVPE-grown AlN on high-temperature annealed AlN buffer layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Si%20doping%20on%20dislocation%20behavior%20in%20MOVPE-grown%20AlN%20on%20high-temperature%20annealed%20AlN%20buffer%20layers&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Mogilatenko,%20A.&rft.date=2022-01-31&rft.volume=131&rft.issue=4&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0073076&rft_dat=%3Cproquest_scita%3E2622843212%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622843212&rft_id=info:pmid/&rfr_iscdi=true