Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network
Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This letter proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2022, Vol.29, p.184-188 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | |
container_start_page | 184 |
container_title | IEEE signal processing letters |
container_volume | 29 |
creator | Zhu, Shirong Zhang, Ying He, Kai Zhao, Lasheng |
description | Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This letter proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by a multi-head self-attentive mechanism to pay attention to the time position information. At the same time, we construct a differences order quadruplet loss to train the AWE model to adequately consider the relative and absolute distances between the positive and negative sample pairs. In addition, attention mechanism, differences order quadruplet loss, and word label information are combined to design an objective function so that the AWE vectors have a better feature expression in the embedded space. The experimental results show that the proposed method can improve the learning ability of the network and make the AWEs more identifiable. The above two points result in better performance in the word discrimination task. |
doi_str_mv | 10.1109/LSP.2021.3129702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2622829558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9623419</ieee_id><sourcerecordid>2622829558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-45d469bddf34323c721330b4699e4af99b443ce5cdf69997d179a2f3a3045a9b3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC56352o851lKtUL9Q8RiyyaxsbTc1ySL-90ZaPM3weG-G9yPknNEJYxSuli9PE045mwjGoaL8gIxYUdQ5FyU7TDutaA5A62NyEsKKUlqzuhiRxdS4IcTOZO_O22y-adDarv_IrnVAm7k-ux_WscsXqG02jRH72CXxedDWD9s1xuwB47fzn6fkqNXrgGf7OSZvN_PX2SJfPt7ezabL3HApYy4LK0torG2FFFyYijMhaJM0QKlbgEZKYbAwtk0SVJZVoHkrtKCy0NCIMbnc3d169zVgiGrlBt-nl4qXnNccUuvkojuX8S4Ej63a-m6j_Y9iVP3xUomX-uOl9rxS5GIX6RDx3w4lF5KB-AXKnmUz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622829558</pqid></control><display><type>article</type><title>Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Shirong ; Zhang, Ying ; He, Kai ; Zhao, Lasheng</creator><creatorcontrib>Zhu, Shirong ; Zhang, Ying ; He, Kai ; Zhao, Lasheng</creatorcontrib><description>Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This letter proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by a multi-head self-attentive mechanism to pay attention to the time position information. At the same time, we construct a differences order quadruplet loss to train the AWE model to adequately consider the relative and absolute distances between the positive and negative sample pairs. In addition, attention mechanism, differences order quadruplet loss, and word label information are combined to design an objective function so that the AWE vectors have a better feature expression in the embedded space. The experimental results show that the proposed method can improve the learning ability of the network and make the AWEs more identifiable. The above two points result in better performance in the word discrimination task.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2021.3129702</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic word embedding ; Acoustics ; attention mechanism ; Embedding ; Linear programming ; Phonetics ; quadruplet network ; query-by-example ; Speech recognition ; Task analysis ; Training ; Vocabulary</subject><ispartof>IEEE signal processing letters, 2022, Vol.29, p.184-188</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-45d469bddf34323c721330b4699e4af99b443ce5cdf69997d179a2f3a3045a9b3</cites><orcidid>0000-0003-3003-7085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9623419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27927,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9623419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Shirong</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>He, Kai</creatorcontrib><creatorcontrib>Zhao, Lasheng</creatorcontrib><title>Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This letter proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by a multi-head self-attentive mechanism to pay attention to the time position information. At the same time, we construct a differences order quadruplet loss to train the AWE model to adequately consider the relative and absolute distances between the positive and negative sample pairs. In addition, attention mechanism, differences order quadruplet loss, and word label information are combined to design an objective function so that the AWE vectors have a better feature expression in the embedded space. The experimental results show that the proposed method can improve the learning ability of the network and make the AWEs more identifiable. The above two points result in better performance in the word discrimination task.</description><subject>Acoustic word embedding</subject><subject>Acoustics</subject><subject>attention mechanism</subject><subject>Embedding</subject><subject>Linear programming</subject><subject>Phonetics</subject><subject>quadruplet network</subject><subject>query-by-example</subject><subject>Speech recognition</subject><subject>Task analysis</subject><subject>Training</subject><subject>Vocabulary</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC56352o851lKtUL9Q8RiyyaxsbTc1ySL-90ZaPM3weG-G9yPknNEJYxSuli9PE045mwjGoaL8gIxYUdQ5FyU7TDutaA5A62NyEsKKUlqzuhiRxdS4IcTOZO_O22y-adDarv_IrnVAm7k-ux_WscsXqG02jRH72CXxedDWD9s1xuwB47fzn6fkqNXrgGf7OSZvN_PX2SJfPt7ezabL3HApYy4LK0torG2FFFyYijMhaJM0QKlbgEZKYbAwtk0SVJZVoHkrtKCy0NCIMbnc3d169zVgiGrlBt-nl4qXnNccUuvkojuX8S4Ej63a-m6j_Y9iVP3xUomX-uOl9rxS5GIX6RDx3w4lF5KB-AXKnmUz</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhu, Shirong</creator><creator>Zhang, Ying</creator><creator>He, Kai</creator><creator>Zhao, Lasheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3003-7085</orcidid></search><sort><creationdate>2022</creationdate><title>Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network</title><author>Zhu, Shirong ; Zhang, Ying ; He, Kai ; Zhao, Lasheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-45d469bddf34323c721330b4699e4af99b443ce5cdf69997d179a2f3a3045a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic word embedding</topic><topic>Acoustics</topic><topic>attention mechanism</topic><topic>Embedding</topic><topic>Linear programming</topic><topic>Phonetics</topic><topic>quadruplet network</topic><topic>query-by-example</topic><topic>Speech recognition</topic><topic>Task analysis</topic><topic>Training</topic><topic>Vocabulary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shirong</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>He, Kai</creatorcontrib><creatorcontrib>Zhao, Lasheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Shirong</au><au>Zhang, Ying</au><au>He, Kai</au><au>Zhao, Lasheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2022</date><risdate>2022</risdate><volume>29</volume><spage>184</spage><epage>188</epage><pages>184-188</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This letter proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by a multi-head self-attentive mechanism to pay attention to the time position information. At the same time, we construct a differences order quadruplet loss to train the AWE model to adequately consider the relative and absolute distances between the positive and negative sample pairs. In addition, attention mechanism, differences order quadruplet loss, and word label information are combined to design an objective function so that the AWE vectors have a better feature expression in the embedded space. The experimental results show that the proposed method can improve the learning ability of the network and make the AWEs more identifiable. The above two points result in better performance in the word discrimination task.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2021.3129702</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3003-7085</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2022, Vol.29, p.184-188 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_2622829558 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic word embedding Acoustics attention mechanism Embedding Linear programming Phonetics quadruplet network query-by-example Speech recognition Task analysis Training Vocabulary |
title | Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Word%20Embedding%20Based%20on%20Multi-Head%20Attention%20Quadruplet%20Network&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Zhu,%20Shirong&rft.date=2022&rft.volume=29&rft.spage=184&rft.epage=188&rft.pages=184-188&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2021.3129702&rft_dat=%3Cproquest_RIE%3E2622829558%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622829558&rft_id=info:pmid/&rft_ieee_id=9623419&rfr_iscdi=true |