Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network

Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This letter proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2022, Vol.29, p.184-188
Hauptverfasser: Zhu, Shirong, Zhang, Ying, He, Kai, Zhao, Lasheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue
container_start_page 184
container_title IEEE signal processing letters
container_volume 29
creator Zhu, Shirong
Zhang, Ying
He, Kai
Zhao, Lasheng
description Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This letter proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by a multi-head self-attentive mechanism to pay attention to the time position information. At the same time, we construct a differences order quadruplet loss to train the AWE model to adequately consider the relative and absolute distances between the positive and negative sample pairs. In addition, attention mechanism, differences order quadruplet loss, and word label information are combined to design an objective function so that the AWE vectors have a better feature expression in the embedded space. The experimental results show that the proposed method can improve the learning ability of the network and make the AWEs more identifiable. The above two points result in better performance in the word discrimination task.
doi_str_mv 10.1109/LSP.2021.3129702
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2622829558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9623419</ieee_id><sourcerecordid>2622829558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-45d469bddf34323c721330b4699e4af99b443ce5cdf69997d179a2f3a3045a9b3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC56352o851lKtUL9Q8RiyyaxsbTc1ySL-90ZaPM3weG-G9yPknNEJYxSuli9PE045mwjGoaL8gIxYUdQ5FyU7TDutaA5A62NyEsKKUlqzuhiRxdS4IcTOZO_O22y-adDarv_IrnVAm7k-ux_WscsXqG02jRH72CXxedDWD9s1xuwB47fzn6fkqNXrgGf7OSZvN_PX2SJfPt7ezabL3HApYy4LK0torG2FFFyYijMhaJM0QKlbgEZKYbAwtk0SVJZVoHkrtKCy0NCIMbnc3d169zVgiGrlBt-nl4qXnNccUuvkojuX8S4Ej63a-m6j_Y9iVP3xUomX-uOl9rxS5GIX6RDx3w4lF5KB-AXKnmUz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622829558</pqid></control><display><type>article</type><title>Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Shirong ; Zhang, Ying ; He, Kai ; Zhao, Lasheng</creator><creatorcontrib>Zhu, Shirong ; Zhang, Ying ; He, Kai ; Zhao, Lasheng</creatorcontrib><description>Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This letter proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by a multi-head self-attentive mechanism to pay attention to the time position information. At the same time, we construct a differences order quadruplet loss to train the AWE model to adequately consider the relative and absolute distances between the positive and negative sample pairs. In addition, attention mechanism, differences order quadruplet loss, and word label information are combined to design an objective function so that the AWE vectors have a better feature expression in the embedded space. The experimental results show that the proposed method can improve the learning ability of the network and make the AWEs more identifiable. The above two points result in better performance in the word discrimination task.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2021.3129702</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic word embedding ; Acoustics ; attention mechanism ; Embedding ; Linear programming ; Phonetics ; quadruplet network ; query-by-example ; Speech recognition ; Task analysis ; Training ; Vocabulary</subject><ispartof>IEEE signal processing letters, 2022, Vol.29, p.184-188</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-45d469bddf34323c721330b4699e4af99b443ce5cdf69997d179a2f3a3045a9b3</cites><orcidid>0000-0003-3003-7085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9623419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27927,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9623419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Shirong</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>He, Kai</creatorcontrib><creatorcontrib>Zhao, Lasheng</creatorcontrib><title>Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This letter proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by a multi-head self-attentive mechanism to pay attention to the time position information. At the same time, we construct a differences order quadruplet loss to train the AWE model to adequately consider the relative and absolute distances between the positive and negative sample pairs. In addition, attention mechanism, differences order quadruplet loss, and word label information are combined to design an objective function so that the AWE vectors have a better feature expression in the embedded space. The experimental results show that the proposed method can improve the learning ability of the network and make the AWEs more identifiable. The above two points result in better performance in the word discrimination task.</description><subject>Acoustic word embedding</subject><subject>Acoustics</subject><subject>attention mechanism</subject><subject>Embedding</subject><subject>Linear programming</subject><subject>Phonetics</subject><subject>quadruplet network</subject><subject>query-by-example</subject><subject>Speech recognition</subject><subject>Task analysis</subject><subject>Training</subject><subject>Vocabulary</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC56352o851lKtUL9Q8RiyyaxsbTc1ySL-90ZaPM3weG-G9yPknNEJYxSuli9PE045mwjGoaL8gIxYUdQ5FyU7TDutaA5A62NyEsKKUlqzuhiRxdS4IcTOZO_O22y-adDarv_IrnVAm7k-ux_WscsXqG02jRH72CXxedDWD9s1xuwB47fzn6fkqNXrgGf7OSZvN_PX2SJfPt7ezabL3HApYy4LK0torG2FFFyYijMhaJM0QKlbgEZKYbAwtk0SVJZVoHkrtKCy0NCIMbnc3d169zVgiGrlBt-nl4qXnNccUuvkojuX8S4Ej63a-m6j_Y9iVP3xUomX-uOl9rxS5GIX6RDx3w4lF5KB-AXKnmUz</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhu, Shirong</creator><creator>Zhang, Ying</creator><creator>He, Kai</creator><creator>Zhao, Lasheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3003-7085</orcidid></search><sort><creationdate>2022</creationdate><title>Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network</title><author>Zhu, Shirong ; Zhang, Ying ; He, Kai ; Zhao, Lasheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-45d469bddf34323c721330b4699e4af99b443ce5cdf69997d179a2f3a3045a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic word embedding</topic><topic>Acoustics</topic><topic>attention mechanism</topic><topic>Embedding</topic><topic>Linear programming</topic><topic>Phonetics</topic><topic>quadruplet network</topic><topic>query-by-example</topic><topic>Speech recognition</topic><topic>Task analysis</topic><topic>Training</topic><topic>Vocabulary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shirong</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>He, Kai</creatorcontrib><creatorcontrib>Zhao, Lasheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Shirong</au><au>Zhang, Ying</au><au>He, Kai</au><au>Zhao, Lasheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2022</date><risdate>2022</risdate><volume>29</volume><spage>184</spage><epage>188</epage><pages>184-188</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Acoustic word embedding (AWE) has become a mainstream method in low-resource Query-by-Example keywords search. This letter proposes an AWE based on a multi-head attention quadruplet network, which can learn the attention weight sequence for all time frames of bidirectional Long Short-Term Memory by a multi-head self-attentive mechanism to pay attention to the time position information. At the same time, we construct a differences order quadruplet loss to train the AWE model to adequately consider the relative and absolute distances between the positive and negative sample pairs. In addition, attention mechanism, differences order quadruplet loss, and word label information are combined to design an objective function so that the AWE vectors have a better feature expression in the embedded space. The experimental results show that the proposed method can improve the learning ability of the network and make the AWEs more identifiable. The above two points result in better performance in the word discrimination task.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2021.3129702</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3003-7085</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2022, Vol.29, p.184-188
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_2622829558
source IEEE Electronic Library (IEL)
subjects Acoustic word embedding
Acoustics
attention mechanism
Embedding
Linear programming
Phonetics
quadruplet network
query-by-example
Speech recognition
Task analysis
Training
Vocabulary
title Acoustic Word Embedding Based on Multi-Head Attention Quadruplet Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Word%20Embedding%20Based%20on%20Multi-Head%20Attention%20Quadruplet%20Network&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Zhu,%20Shirong&rft.date=2022&rft.volume=29&rft.spage=184&rft.epage=188&rft.pages=184-188&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2021.3129702&rft_dat=%3Cproquest_RIE%3E2622829558%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622829558&rft_id=info:pmid/&rft_ieee_id=9623419&rfr_iscdi=true