Hyers–Ulam stability on local fractal calculus and radioactive decay

In this paper, we summarize the local fractal calculus, called F α -calculus, which defines derivatives and integrals of functions with fractal domains of non-integer dimensions, functions for which ordinary calculus fails. Hyers–Ulam stability provides a method to find approximate solutions for equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2021-12, Vol.230 (21-22), p.3889-3894
Hauptverfasser: Khalili Golmankhaneh, Alireza, Tunç, Cemil, Şevli, Hamdullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we summarize the local fractal calculus, called F α -calculus, which defines derivatives and integrals of functions with fractal domains of non-integer dimensions, functions for which ordinary calculus fails. Hyers–Ulam stability provides a method to find approximate solutions for equations where the exact solution cannot be found. Here, we generalize Hyers–Ulam stability to be applied to α -order linear fractal differential equations. The nuclear decay law involving fractal time is suggested, and it is proved to be fractally Hyers–Ulam stable.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjs/s11734-021-00316-5