Hyers–Ulam stability on local fractal calculus and radioactive decay
In this paper, we summarize the local fractal calculus, called F α -calculus, which defines derivatives and integrals of functions with fractal domains of non-integer dimensions, functions for which ordinary calculus fails. Hyers–Ulam stability provides a method to find approximate solutions for equ...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2021-12, Vol.230 (21-22), p.3889-3894 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we summarize the local fractal calculus, called
F
α
-calculus, which defines derivatives and integrals of functions with fractal domains of non-integer dimensions, functions for which ordinary calculus fails. Hyers–Ulam stability provides a method to find approximate solutions for equations where the exact solution cannot be found. Here, we generalize Hyers–Ulam stability to be applied to
α
-order linear fractal differential equations. The nuclear decay law involving fractal time is suggested, and it is proved to be fractally Hyers–Ulam stable. |
---|---|
ISSN: | 1951-6355 1951-6401 |
DOI: | 10.1140/epjs/s11734-021-00316-5 |