Reply to: LncADeep performance on full-length transcripts

To address their suggestion, as mentioned previously, we have already updated our website (http://homepage.cs.latrobe.edu.au/ypchen/ncRNAanalysis/) to include the statement “Note: In our experiments, we have used the full-length model of LncADeep” and have also included the experiments of the partia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature machine intelligence 2021-03, Vol.3 (3), p.196-196
Hauptverfasser: Amin, Noorul, McGrath, Annette, Chen, Yi-Ping Phoebe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 3
container_start_page 196
container_title Nature machine intelligence
container_volume 3
creator Amin, Noorul
McGrath, Annette
Chen, Yi-Ping Phoebe
description To address their suggestion, as mentioned previously, we have already updated our website (http://homepage.cs.latrobe.edu.au/ypchen/ncRNAanalysis/) to include the statement “Note: In our experiments, we have used the full-length model of LncADeep” and have also included the experiments of the partial-length model of LncADeep. Data availability The dataset and source code are available at http://homepage.cs.latrobe.edu.au/ypchen/ncRNAanalysis/. LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property.
doi_str_mv 10.1038/s42256-019-0107-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622642594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622642594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6534531e91ab8be3942a839fd00bee23ad52b913910c3a446e0db6d0dd70046c3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWLR_gLcFz6uTyUcbb6V-QkEQPYdsdra2bLNrsj30vzdlBb14GGYO7715_Bi74nDDQcxvk0RUugRu8sCsFCdsggqxVHNhTv_c52ya0hYAkEupQE6YeaO-PRRDd1esgl_cE_VFT7Hp4s4FT0UXimbftmVLYT18FkN0Ifm46Yd0yc4a1yaa_uwL9vH48L58LlevTy_Lxar0guuh1EpIJTgZ7qp5RcJIdLlJUwNURChcrbAyXBgOXjgpNUFd6RrqegYgtRcX7HrM7WP3tac02G23jyG_tKgRtURlZFbxUeVjl1KkxvZxs3PxYDnYIyQ7QrIZkj1CsiJ7cPSkrA1rir_J_5u-AZYqZ-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622642594</pqid></control><display><type>article</type><title>Reply to: LncADeep performance on full-length transcripts</title><source>SpringerLink Journals - AutoHoldings</source><creator>Amin, Noorul ; McGrath, Annette ; Chen, Yi-Ping Phoebe</creator><creatorcontrib>Amin, Noorul ; McGrath, Annette ; Chen, Yi-Ping Phoebe</creatorcontrib><description>To address their suggestion, as mentioned previously, we have already updated our website (http://homepage.cs.latrobe.edu.au/ypchen/ncRNAanalysis/) to include the statement “Note: In our experiments, we have used the full-length model of LncADeep” and have also included the experiments of the partial-length model of LncADeep. Data availability The dataset and source code are available at http://homepage.cs.latrobe.edu.au/ypchen/ncRNAanalysis/. LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property.</description><identifier>ISSN: 2522-5839</identifier><identifier>EISSN: 2522-5839</identifier><identifier>DOI: 10.1038/s42256-019-0107-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/91 ; 631/114/1305 ; 631/114/1386 ; Bioinformatics ; Datasets ; Deep learning ; Engineering ; Experiments ; Matters Arising ; Source code ; Websites</subject><ispartof>Nature machine intelligence, 2021-03, Vol.3 (3), p.196-196</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6534531e91ab8be3942a839fd00bee23ad52b913910c3a446e0db6d0dd70046c3</citedby><cites>FETCH-LOGICAL-c316t-6534531e91ab8be3942a839fd00bee23ad52b913910c3a446e0db6d0dd70046c3</cites><orcidid>0000-0001-7747-7956 ; 0000-0002-4122-3767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42256-019-0107-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42256-019-0107-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Amin, Noorul</creatorcontrib><creatorcontrib>McGrath, Annette</creatorcontrib><creatorcontrib>Chen, Yi-Ping Phoebe</creatorcontrib><title>Reply to: LncADeep performance on full-length transcripts</title><title>Nature machine intelligence</title><addtitle>Nat Mach Intell</addtitle><description>To address their suggestion, as mentioned previously, we have already updated our website (http://homepage.cs.latrobe.edu.au/ypchen/ncRNAanalysis/) to include the statement “Note: In our experiments, we have used the full-length model of LncADeep” and have also included the experiments of the partial-length model of LncADeep. Data availability The dataset and source code are available at http://homepage.cs.latrobe.edu.au/ypchen/ncRNAanalysis/. LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property.</description><subject>45/91</subject><subject>631/114/1305</subject><subject>631/114/1386</subject><subject>Bioinformatics</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Matters Arising</subject><subject>Source code</subject><subject>Websites</subject><issn>2522-5839</issn><issn>2522-5839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1LAzEQxYMoWLR_gLcFz6uTyUcbb6V-QkEQPYdsdra2bLNrsj30vzdlBb14GGYO7715_Bi74nDDQcxvk0RUugRu8sCsFCdsggqxVHNhTv_c52ya0hYAkEupQE6YeaO-PRRDd1esgl_cE_VFT7Hp4s4FT0UXimbftmVLYT18FkN0Ifm46Yd0yc4a1yaa_uwL9vH48L58LlevTy_Lxar0guuh1EpIJTgZ7qp5RcJIdLlJUwNURChcrbAyXBgOXjgpNUFd6RrqegYgtRcX7HrM7WP3tac02G23jyG_tKgRtURlZFbxUeVjl1KkxvZxs3PxYDnYIyQ7QrIZkj1CsiJ7cPSkrA1rir_J_5u-AZYqZ-M</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Amin, Noorul</creator><creator>McGrath, Annette</creator><creator>Chen, Yi-Ping Phoebe</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7747-7956</orcidid><orcidid>https://orcid.org/0000-0002-4122-3767</orcidid></search><sort><creationdate>20210301</creationdate><title>Reply to: LncADeep performance on full-length transcripts</title><author>Amin, Noorul ; McGrath, Annette ; Chen, Yi-Ping Phoebe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6534531e91ab8be3942a839fd00bee23ad52b913910c3a446e0db6d0dd70046c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45/91</topic><topic>631/114/1305</topic><topic>631/114/1386</topic><topic>Bioinformatics</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Matters Arising</topic><topic>Source code</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Noorul</creatorcontrib><creatorcontrib>McGrath, Annette</creatorcontrib><creatorcontrib>Chen, Yi-Ping Phoebe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Noorul</au><au>McGrath, Annette</au><au>Chen, Yi-Ping Phoebe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reply to: LncADeep performance on full-length transcripts</atitle><jtitle>Nature machine intelligence</jtitle><stitle>Nat Mach Intell</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>3</volume><issue>3</issue><spage>196</spage><epage>196</epage><pages>196-196</pages><issn>2522-5839</issn><eissn>2522-5839</eissn><abstract>To address their suggestion, as mentioned previously, we have already updated our website (http://homepage.cs.latrobe.edu.au/ypchen/ncRNAanalysis/) to include the statement “Note: In our experiments, we have used the full-length model of LncADeep” and have also included the experiments of the partial-length model of LncADeep. Data availability The dataset and source code are available at http://homepage.cs.latrobe.edu.au/ypchen/ncRNAanalysis/. LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42256-019-0107-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7747-7956</orcidid><orcidid>https://orcid.org/0000-0002-4122-3767</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2522-5839
ispartof Nature machine intelligence, 2021-03, Vol.3 (3), p.196-196
issn 2522-5839
2522-5839
language eng
recordid cdi_proquest_journals_2622642594
source SpringerLink Journals - AutoHoldings
subjects 45/91
631/114/1305
631/114/1386
Bioinformatics
Datasets
Deep learning
Engineering
Experiments
Matters Arising
Source code
Websites
title Reply to: LncADeep performance on full-length transcripts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reply%20to:%20LncADeep%20performance%20on%20full-length%20transcripts&rft.jtitle=Nature%20machine%20intelligence&rft.au=Amin,%20Noorul&rft.date=2021-03-01&rft.volume=3&rft.issue=3&rft.spage=196&rft.epage=196&rft.pages=196-196&rft.issn=2522-5839&rft.eissn=2522-5839&rft_id=info:doi/10.1038/s42256-019-0107-3&rft_dat=%3Cproquest_cross%3E2622642594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622642594&rft_id=info:pmid/&rfr_iscdi=true