An open source machine learning framework for efficient and transparent systematic reviews

To help researchers conduct a systematic review or meta-analysis as efficiently and transparently as possible, we designed a tool to accelerate the step of screening titles and abstracts. For many tasks—including but not limited to systematic reviews and meta-analyses—the scientific literature needs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature machine intelligence 2021-02, Vol.3 (2), p.125-133
Hauptverfasser: van de Schoot, Rens, de Bruin, Jonathan, Schram, Raoul, Zahedi, Parisa, de Boer, Jan, Weijdema, Felix, Kramer, Bianca, Huijts, Martijn, Hoogerwerf, Maarten, Ferdinands, Gerbrich, Harkema, Albert, Willemsen, Joukje, Ma, Yongchao, Fang, Qixiang, Hindriks, Sybren, Tummers, Lars, Oberski, Daniel L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 2
container_start_page 125
container_title Nature machine intelligence
container_volume 3
creator van de Schoot, Rens
de Bruin, Jonathan
Schram, Raoul
Zahedi, Parisa
de Boer, Jan
Weijdema, Felix
Kramer, Bianca
Huijts, Martijn
Hoogerwerf, Maarten
Ferdinands, Gerbrich
Harkema, Albert
Willemsen, Joukje
Ma, Yongchao
Fang, Qixiang
Hindriks, Sybren
Tummers, Lars
Oberski, Daniel L.
description To help researchers conduct a systematic review or meta-analysis as efficiently and transparently as possible, we designed a tool to accelerate the step of screening titles and abstracts. For many tasks—including but not limited to systematic reviews and meta-analyses—the scientific literature needs to be checked systematically. Scholars and practitioners currently screen thousands of studies by hand to determine which studies to include in their review or meta-analysis. This is error prone and inefficient because of extremely imbalanced data: only a fraction of the screened studies is relevant. The future of systematic reviewing will be an interaction with machine learning algorithms to deal with the enormous increase of available text. We therefore developed an open source machine learning-aided pipeline applying active learning: ASReview. We demonstrate by means of simulation studies that active learning can yield far more efficient reviewing than manual reviewing while providing high quality. Furthermore, we describe the options of the free and open source research software and present the results from user experience tests. We invite the community to contribute to open source projects such as our own that provide measurable and reproducible improvements over current practice. It is a challenging task for any research field to screen the literature and determine what needs to be included in a systematic review in a transparent way. A new open source machine learning framework called ASReview, which employs active learning and offers a range of machine learning models, can check the literature efficiently and systemically.
doi_str_mv 10.1038/s42256-020-00287-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622642590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622642590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-46b1469a020cd7eb9914fb572510c9d9a04e191d2e2015f4d5ed8515f94146c83</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKU_wMkS54C9sZP4WFW8pEpc4MLFcp11SWmcYKdU_XtcggQnTjurndmdHUIuObvmLK9uogCQRcaAZYxBVWblCZmABMhklavTP_iczGLcsMTiQkgmJuR17mnXo6ex2wWLtDX2rfFIt2iCb_yaumBa3HfhnbouUHSusQ36gRpf0yEYH3sTjn08xAFbMzSWBvxscB8vyJkz24iznzolL3e3z4uHbPl0_7iYLzMrZTlkolhxUSiT7Nu6xJVSXLiVLEFyZlWdBgK54jUgMC6dqCXWlUxIiaSzVT4lV-PePnQfO4yD3qRffDqpoQAoBEjFEgtGlg1djAGd7kPTmnDQnOljjHqMUScf-jtGXSZRPopiIvs1ht_V_6i-AKB-dUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622642590</pqid></control><display><type>article</type><title>An open source machine learning framework for efficient and transparent systematic reviews</title><source>SpringerLink Journals</source><creator>van de Schoot, Rens ; de Bruin, Jonathan ; Schram, Raoul ; Zahedi, Parisa ; de Boer, Jan ; Weijdema, Felix ; Kramer, Bianca ; Huijts, Martijn ; Hoogerwerf, Maarten ; Ferdinands, Gerbrich ; Harkema, Albert ; Willemsen, Joukje ; Ma, Yongchao ; Fang, Qixiang ; Hindriks, Sybren ; Tummers, Lars ; Oberski, Daniel L.</creator><creatorcontrib>van de Schoot, Rens ; de Bruin, Jonathan ; Schram, Raoul ; Zahedi, Parisa ; de Boer, Jan ; Weijdema, Felix ; Kramer, Bianca ; Huijts, Martijn ; Hoogerwerf, Maarten ; Ferdinands, Gerbrich ; Harkema, Albert ; Willemsen, Joukje ; Ma, Yongchao ; Fang, Qixiang ; Hindriks, Sybren ; Tummers, Lars ; Oberski, Daniel L.</creatorcontrib><description>To help researchers conduct a systematic review or meta-analysis as efficiently and transparently as possible, we designed a tool to accelerate the step of screening titles and abstracts. For many tasks—including but not limited to systematic reviews and meta-analyses—the scientific literature needs to be checked systematically. Scholars and practitioners currently screen thousands of studies by hand to determine which studies to include in their review or meta-analysis. This is error prone and inefficient because of extremely imbalanced data: only a fraction of the screened studies is relevant. The future of systematic reviewing will be an interaction with machine learning algorithms to deal with the enormous increase of available text. We therefore developed an open source machine learning-aided pipeline applying active learning: ASReview. We demonstrate by means of simulation studies that active learning can yield far more efficient reviewing than manual reviewing while providing high quality. Furthermore, we describe the options of the free and open source research software and present the results from user experience tests. We invite the community to contribute to open source projects such as our own that provide measurable and reproducible improvements over current practice. It is a challenging task for any research field to screen the literature and determine what needs to be included in a systematic review in a transparent way. A new open source machine learning framework called ASReview, which employs active learning and offers a range of machine learning models, can check the literature efficiently and systemically.</description><identifier>ISSN: 2522-5839</identifier><identifier>EISSN: 2522-5839</identifier><identifier>DOI: 10.1038/s42256-020-00287-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/326/596/4130 ; 639/705/117 ; 692/308 ; Active learning ; Algorithms ; Engineering ; Error analysis ; Freeware ; General Data Protection Regulation ; Literature reviews ; Machine learning ; Medical Subject Headings-MeSH ; Open source software ; Privacy ; Reviewing ; Software utilities ; Support vector machines ; User experience</subject><ispartof>Nature machine intelligence, 2021-02, Vol.3 (2), p.125-133</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-46b1469a020cd7eb9914fb572510c9d9a04e191d2e2015f4d5ed8515f94146c83</citedby><cites>FETCH-LOGICAL-c557t-46b1469a020cd7eb9914fb572510c9d9a04e191d2e2015f4d5ed8515f94146c83</cites><orcidid>0000-0003-1498-2052 ; 0000-0001-5150-1102 ; 0000-0003-2689-6653 ; 0000-0001-9940-9874 ; 0000-0002-7260-0828 ; 0000-0002-4297-0502 ; 0000-0002-5965-6560 ; 0000-0002-7091-1147 ; 0000-0002-0531-3888 ; 0000-0002-1610-3149 ; 0000-0002-8353-0853 ; 0000-0002-4998-3293 ; 0000-0001-7736-2091 ; 0000-0001-7467-2297 ; 0000-0003-4100-5468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42256-020-00287-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42256-020-00287-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>van de Schoot, Rens</creatorcontrib><creatorcontrib>de Bruin, Jonathan</creatorcontrib><creatorcontrib>Schram, Raoul</creatorcontrib><creatorcontrib>Zahedi, Parisa</creatorcontrib><creatorcontrib>de Boer, Jan</creatorcontrib><creatorcontrib>Weijdema, Felix</creatorcontrib><creatorcontrib>Kramer, Bianca</creatorcontrib><creatorcontrib>Huijts, Martijn</creatorcontrib><creatorcontrib>Hoogerwerf, Maarten</creatorcontrib><creatorcontrib>Ferdinands, Gerbrich</creatorcontrib><creatorcontrib>Harkema, Albert</creatorcontrib><creatorcontrib>Willemsen, Joukje</creatorcontrib><creatorcontrib>Ma, Yongchao</creatorcontrib><creatorcontrib>Fang, Qixiang</creatorcontrib><creatorcontrib>Hindriks, Sybren</creatorcontrib><creatorcontrib>Tummers, Lars</creatorcontrib><creatorcontrib>Oberski, Daniel L.</creatorcontrib><title>An open source machine learning framework for efficient and transparent systematic reviews</title><title>Nature machine intelligence</title><addtitle>Nat Mach Intell</addtitle><description>To help researchers conduct a systematic review or meta-analysis as efficiently and transparently as possible, we designed a tool to accelerate the step of screening titles and abstracts. For many tasks—including but not limited to systematic reviews and meta-analyses—the scientific literature needs to be checked systematically. Scholars and practitioners currently screen thousands of studies by hand to determine which studies to include in their review or meta-analysis. This is error prone and inefficient because of extremely imbalanced data: only a fraction of the screened studies is relevant. The future of systematic reviewing will be an interaction with machine learning algorithms to deal with the enormous increase of available text. We therefore developed an open source machine learning-aided pipeline applying active learning: ASReview. We demonstrate by means of simulation studies that active learning can yield far more efficient reviewing than manual reviewing while providing high quality. Furthermore, we describe the options of the free and open source research software and present the results from user experience tests. We invite the community to contribute to open source projects such as our own that provide measurable and reproducible improvements over current practice. It is a challenging task for any research field to screen the literature and determine what needs to be included in a systematic review in a transparent way. A new open source machine learning framework called ASReview, which employs active learning and offers a range of machine learning models, can check the literature efficiently and systemically.</description><subject>631/114</subject><subject>631/326/596/4130</subject><subject>639/705/117</subject><subject>692/308</subject><subject>Active learning</subject><subject>Algorithms</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Freeware</subject><subject>General Data Protection Regulation</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Medical Subject Headings-MeSH</subject><subject>Open source software</subject><subject>Privacy</subject><subject>Reviewing</subject><subject>Software utilities</subject><subject>Support vector machines</subject><subject>User experience</subject><issn>2522-5839</issn><issn>2522-5839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UMtOwzAQtBBIVKU_wMkS54C9sZP4WFW8pEpc4MLFcp11SWmcYKdU_XtcggQnTjurndmdHUIuObvmLK9uogCQRcaAZYxBVWblCZmABMhklavTP_iczGLcsMTiQkgmJuR17mnXo6ex2wWLtDX2rfFIt2iCb_yaumBa3HfhnbouUHSusQ36gRpf0yEYH3sTjn08xAFbMzSWBvxscB8vyJkz24iznzolL3e3z4uHbPl0_7iYLzMrZTlkolhxUSiT7Nu6xJVSXLiVLEFyZlWdBgK54jUgMC6dqCXWlUxIiaSzVT4lV-PePnQfO4yD3qRffDqpoQAoBEjFEgtGlg1djAGd7kPTmnDQnOljjHqMUScf-jtGXSZRPopiIvs1ht_V_6i-AKB-dUo</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>van de Schoot, Rens</creator><creator>de Bruin, Jonathan</creator><creator>Schram, Raoul</creator><creator>Zahedi, Parisa</creator><creator>de Boer, Jan</creator><creator>Weijdema, Felix</creator><creator>Kramer, Bianca</creator><creator>Huijts, Martijn</creator><creator>Hoogerwerf, Maarten</creator><creator>Ferdinands, Gerbrich</creator><creator>Harkema, Albert</creator><creator>Willemsen, Joukje</creator><creator>Ma, Yongchao</creator><creator>Fang, Qixiang</creator><creator>Hindriks, Sybren</creator><creator>Tummers, Lars</creator><creator>Oberski, Daniel L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1498-2052</orcidid><orcidid>https://orcid.org/0000-0001-5150-1102</orcidid><orcidid>https://orcid.org/0000-0003-2689-6653</orcidid><orcidid>https://orcid.org/0000-0001-9940-9874</orcidid><orcidid>https://orcid.org/0000-0002-7260-0828</orcidid><orcidid>https://orcid.org/0000-0002-4297-0502</orcidid><orcidid>https://orcid.org/0000-0002-5965-6560</orcidid><orcidid>https://orcid.org/0000-0002-7091-1147</orcidid><orcidid>https://orcid.org/0000-0002-0531-3888</orcidid><orcidid>https://orcid.org/0000-0002-1610-3149</orcidid><orcidid>https://orcid.org/0000-0002-8353-0853</orcidid><orcidid>https://orcid.org/0000-0002-4998-3293</orcidid><orcidid>https://orcid.org/0000-0001-7736-2091</orcidid><orcidid>https://orcid.org/0000-0001-7467-2297</orcidid><orcidid>https://orcid.org/0000-0003-4100-5468</orcidid></search><sort><creationdate>20210201</creationdate><title>An open source machine learning framework for efficient and transparent systematic reviews</title><author>van de Schoot, Rens ; de Bruin, Jonathan ; Schram, Raoul ; Zahedi, Parisa ; de Boer, Jan ; Weijdema, Felix ; Kramer, Bianca ; Huijts, Martijn ; Hoogerwerf, Maarten ; Ferdinands, Gerbrich ; Harkema, Albert ; Willemsen, Joukje ; Ma, Yongchao ; Fang, Qixiang ; Hindriks, Sybren ; Tummers, Lars ; Oberski, Daniel L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-46b1469a020cd7eb9914fb572510c9d9a04e191d2e2015f4d5ed8515f94146c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114</topic><topic>631/326/596/4130</topic><topic>639/705/117</topic><topic>692/308</topic><topic>Active learning</topic><topic>Algorithms</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Freeware</topic><topic>General Data Protection Regulation</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Medical Subject Headings-MeSH</topic><topic>Open source software</topic><topic>Privacy</topic><topic>Reviewing</topic><topic>Software utilities</topic><topic>Support vector machines</topic><topic>User experience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van de Schoot, Rens</creatorcontrib><creatorcontrib>de Bruin, Jonathan</creatorcontrib><creatorcontrib>Schram, Raoul</creatorcontrib><creatorcontrib>Zahedi, Parisa</creatorcontrib><creatorcontrib>de Boer, Jan</creatorcontrib><creatorcontrib>Weijdema, Felix</creatorcontrib><creatorcontrib>Kramer, Bianca</creatorcontrib><creatorcontrib>Huijts, Martijn</creatorcontrib><creatorcontrib>Hoogerwerf, Maarten</creatorcontrib><creatorcontrib>Ferdinands, Gerbrich</creatorcontrib><creatorcontrib>Harkema, Albert</creatorcontrib><creatorcontrib>Willemsen, Joukje</creatorcontrib><creatorcontrib>Ma, Yongchao</creatorcontrib><creatorcontrib>Fang, Qixiang</creatorcontrib><creatorcontrib>Hindriks, Sybren</creatorcontrib><creatorcontrib>Tummers, Lars</creatorcontrib><creatorcontrib>Oberski, Daniel L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van de Schoot, Rens</au><au>de Bruin, Jonathan</au><au>Schram, Raoul</au><au>Zahedi, Parisa</au><au>de Boer, Jan</au><au>Weijdema, Felix</au><au>Kramer, Bianca</au><au>Huijts, Martijn</au><au>Hoogerwerf, Maarten</au><au>Ferdinands, Gerbrich</au><au>Harkema, Albert</au><au>Willemsen, Joukje</au><au>Ma, Yongchao</au><au>Fang, Qixiang</au><au>Hindriks, Sybren</au><au>Tummers, Lars</au><au>Oberski, Daniel L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An open source machine learning framework for efficient and transparent systematic reviews</atitle><jtitle>Nature machine intelligence</jtitle><stitle>Nat Mach Intell</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>3</volume><issue>2</issue><spage>125</spage><epage>133</epage><pages>125-133</pages><issn>2522-5839</issn><eissn>2522-5839</eissn><abstract>To help researchers conduct a systematic review or meta-analysis as efficiently and transparently as possible, we designed a tool to accelerate the step of screening titles and abstracts. For many tasks—including but not limited to systematic reviews and meta-analyses—the scientific literature needs to be checked systematically. Scholars and practitioners currently screen thousands of studies by hand to determine which studies to include in their review or meta-analysis. This is error prone and inefficient because of extremely imbalanced data: only a fraction of the screened studies is relevant. The future of systematic reviewing will be an interaction with machine learning algorithms to deal with the enormous increase of available text. We therefore developed an open source machine learning-aided pipeline applying active learning: ASReview. We demonstrate by means of simulation studies that active learning can yield far more efficient reviewing than manual reviewing while providing high quality. Furthermore, we describe the options of the free and open source research software and present the results from user experience tests. We invite the community to contribute to open source projects such as our own that provide measurable and reproducible improvements over current practice. It is a challenging task for any research field to screen the literature and determine what needs to be included in a systematic review in a transparent way. A new open source machine learning framework called ASReview, which employs active learning and offers a range of machine learning models, can check the literature efficiently and systemically.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42256-020-00287-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1498-2052</orcidid><orcidid>https://orcid.org/0000-0001-5150-1102</orcidid><orcidid>https://orcid.org/0000-0003-2689-6653</orcidid><orcidid>https://orcid.org/0000-0001-9940-9874</orcidid><orcidid>https://orcid.org/0000-0002-7260-0828</orcidid><orcidid>https://orcid.org/0000-0002-4297-0502</orcidid><orcidid>https://orcid.org/0000-0002-5965-6560</orcidid><orcidid>https://orcid.org/0000-0002-7091-1147</orcidid><orcidid>https://orcid.org/0000-0002-0531-3888</orcidid><orcidid>https://orcid.org/0000-0002-1610-3149</orcidid><orcidid>https://orcid.org/0000-0002-8353-0853</orcidid><orcidid>https://orcid.org/0000-0002-4998-3293</orcidid><orcidid>https://orcid.org/0000-0001-7736-2091</orcidid><orcidid>https://orcid.org/0000-0001-7467-2297</orcidid><orcidid>https://orcid.org/0000-0003-4100-5468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-5839
ispartof Nature machine intelligence, 2021-02, Vol.3 (2), p.125-133
issn 2522-5839
2522-5839
language eng
recordid cdi_proquest_journals_2622642590
source SpringerLink Journals
subjects 631/114
631/326/596/4130
639/705/117
692/308
Active learning
Algorithms
Engineering
Error analysis
Freeware
General Data Protection Regulation
Literature reviews
Machine learning
Medical Subject Headings-MeSH
Open source software
Privacy
Reviewing
Software utilities
Support vector machines
User experience
title An open source machine learning framework for efficient and transparent systematic reviews
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20open%20source%20machine%20learning%20framework%20for%20efficient%20and%20transparent%20systematic%20reviews&rft.jtitle=Nature%20machine%20intelligence&rft.au=van%20de%20Schoot,%20Rens&rft.date=2021-02-01&rft.volume=3&rft.issue=2&rft.spage=125&rft.epage=133&rft.pages=125-133&rft.issn=2522-5839&rft.eissn=2522-5839&rft_id=info:doi/10.1038/s42256-020-00287-7&rft_dat=%3Cproquest_cross%3E2622642590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622642590&rft_id=info:pmid/&rfr_iscdi=true