Enhanced encoder for non-autoregressive machine translation
Non-autoregressive machine translation aims to speed up the decoding procedure by discarding the autoregressive model and generating the target words independently. Because non-autoregressive machine translation fails to exploit target-side information, the ability to accurately model source represe...
Gespeichert in:
Veröffentlicht in: | Machine translation 2021-12, Vol.35 (4), p.595-609 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | 4 |
container_start_page | 595 |
container_title | Machine translation |
container_volume | 35 |
creator | Wang, Shuheng Shi, Shumin Huang, Heyan |
description | Non-autoregressive machine translation aims to speed up the decoding procedure by discarding the autoregressive model and generating the target words independently. Because non-autoregressive machine translation fails to exploit target-side information, the ability to accurately model source representations is critical. In this paper, we propose an approach to enhance the encoder’s modeling ability by using a pre-trained BERT model as an extra encoder. With a different tokenization method, the BERT encoder and the Raw encoder can model the source input from different aspects. Furthermore, having a gate mechanism, the decoder can dynamically determine which representations contribute to the decoding process. Experimental results on three translation tasks show that our method can significantly improve the performance of non-autoregressive MT, and surpass the baseline non-autoregressive models. On the WMT14 EN
→
DE translation task, our method achieves 27.87 BLEU with a single decoding step. This is a comparable result with the baseline autoregressive Transformer model which obtains a score of 27.8 BLEU. |
doi_str_mv | 10.1007/s10590-021-09285-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622619474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622619474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9c50b34d5cebf5931a3bc6a4c1863decb3ec053d69921d260925881f7503a6f83</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbLIbPEmpVSh40XPIZmfbLW1Sk63Utze6gjcvMzD838zwEXLN4JYBVHeJgdRAgTMKmteSHk_IhMlKUMjllEzylFMlVXVOLlLaAGQMxITcz_3aeodtgd6FFmPRhVj44Kk9DCHiKmJK_QcWO-vWvcdiiNanrR364C_JWWe3Ca9--5S8Pc5fZ090-bJ4nj0sqeMVDFQ7CY0oW-mw6aQWzIrGKVs6VivRomsEOpCiVVpz1nKVX5V1zbpKgrCqq8WU3Ix79zG8HzANZhMO0eeThivOFdNlVeYUH1MuhpQidmYf-52Nn4aB-ZZkRkkmSzI_kswxQ2KEUg77Fca_1f9QXy78aj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622619474</pqid></control><display><type>article</type><title>Enhanced encoder for non-autoregressive machine translation</title><source>SpringerNature Journals</source><creator>Wang, Shuheng ; Shi, Shumin ; Huang, Heyan</creator><creatorcontrib>Wang, Shuheng ; Shi, Shumin ; Huang, Heyan</creatorcontrib><description>Non-autoregressive machine translation aims to speed up the decoding procedure by discarding the autoregressive model and generating the target words independently. Because non-autoregressive machine translation fails to exploit target-side information, the ability to accurately model source representations is critical. In this paper, we propose an approach to enhance the encoder’s modeling ability by using a pre-trained BERT model as an extra encoder. With a different tokenization method, the BERT encoder and the Raw encoder can model the source input from different aspects. Furthermore, having a gate mechanism, the decoder can dynamically determine which representations contribute to the decoding process. Experimental results on three translation tasks show that our method can significantly improve the performance of non-autoregressive MT, and surpass the baseline non-autoregressive models. On the WMT14 EN
→
DE translation task, our method achieves 27.87 BLEU with a single decoding step. This is a comparable result with the baseline autoregressive Transformer model which obtains a score of 27.8 BLEU.</description><identifier>ISSN: 0922-6567</identifier><identifier>EISSN: 1573-0573</identifier><identifier>DOI: 10.1007/s10590-021-09285-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Autoregressive models ; Coders ; Computational Linguistics ; Computer Science ; Decoding ; Machine translation ; Natural Language Processing (NLP) ; Representations ; Translation methods and strategies</subject><ispartof>Machine translation, 2021-12, Vol.35 (4), p.595-609</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9c50b34d5cebf5931a3bc6a4c1863decb3ec053d69921d260925881f7503a6f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10590-021-09285-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10590-021-09285-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Wang, Shuheng</creatorcontrib><creatorcontrib>Shi, Shumin</creatorcontrib><creatorcontrib>Huang, Heyan</creatorcontrib><title>Enhanced encoder for non-autoregressive machine translation</title><title>Machine translation</title><addtitle>Machine Translation</addtitle><description>Non-autoregressive machine translation aims to speed up the decoding procedure by discarding the autoregressive model and generating the target words independently. Because non-autoregressive machine translation fails to exploit target-side information, the ability to accurately model source representations is critical. In this paper, we propose an approach to enhance the encoder’s modeling ability by using a pre-trained BERT model as an extra encoder. With a different tokenization method, the BERT encoder and the Raw encoder can model the source input from different aspects. Furthermore, having a gate mechanism, the decoder can dynamically determine which representations contribute to the decoding process. Experimental results on three translation tasks show that our method can significantly improve the performance of non-autoregressive MT, and surpass the baseline non-autoregressive models. On the WMT14 EN
→
DE translation task, our method achieves 27.87 BLEU with a single decoding step. This is a comparable result with the baseline autoregressive Transformer model which obtains a score of 27.8 BLEU.</description><subject>Artificial Intelligence</subject><subject>Autoregressive models</subject><subject>Coders</subject><subject>Computational Linguistics</subject><subject>Computer Science</subject><subject>Decoding</subject><subject>Machine translation</subject><subject>Natural Language Processing (NLP)</subject><subject>Representations</subject><subject>Translation methods and strategies</subject><issn>0922-6567</issn><issn>1573-0573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbLIbPEmpVSh40XPIZmfbLW1Sk63Utze6gjcvMzD838zwEXLN4JYBVHeJgdRAgTMKmteSHk_IhMlKUMjllEzylFMlVXVOLlLaAGQMxITcz_3aeodtgd6FFmPRhVj44Kk9DCHiKmJK_QcWO-vWvcdiiNanrR364C_JWWe3Ca9--5S8Pc5fZ090-bJ4nj0sqeMVDFQ7CY0oW-mw6aQWzIrGKVs6VivRomsEOpCiVVpz1nKVX5V1zbpKgrCqq8WU3Ix79zG8HzANZhMO0eeThivOFdNlVeYUH1MuhpQidmYf-52Nn4aB-ZZkRkkmSzI_kswxQ2KEUg77Fca_1f9QXy78aj0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wang, Shuheng</creator><creator>Shi, Shumin</creator><creator>Huang, Heyan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope></search><sort><creationdate>20211201</creationdate><title>Enhanced encoder for non-autoregressive machine translation</title><author>Wang, Shuheng ; Shi, Shumin ; Huang, Heyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9c50b34d5cebf5931a3bc6a4c1863decb3ec053d69921d260925881f7503a6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Autoregressive models</topic><topic>Coders</topic><topic>Computational Linguistics</topic><topic>Computer Science</topic><topic>Decoding</topic><topic>Machine translation</topic><topic>Natural Language Processing (NLP)</topic><topic>Representations</topic><topic>Translation methods and strategies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuheng</creatorcontrib><creatorcontrib>Shi, Shumin</creatorcontrib><creatorcontrib>Huang, Heyan</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Machine translation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuheng</au><au>Shi, Shumin</au><au>Huang, Heyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced encoder for non-autoregressive machine translation</atitle><jtitle>Machine translation</jtitle><stitle>Machine Translation</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>35</volume><issue>4</issue><spage>595</spage><epage>609</epage><pages>595-609</pages><issn>0922-6567</issn><eissn>1573-0573</eissn><abstract>Non-autoregressive machine translation aims to speed up the decoding procedure by discarding the autoregressive model and generating the target words independently. Because non-autoregressive machine translation fails to exploit target-side information, the ability to accurately model source representations is critical. In this paper, we propose an approach to enhance the encoder’s modeling ability by using a pre-trained BERT model as an extra encoder. With a different tokenization method, the BERT encoder and the Raw encoder can model the source input from different aspects. Furthermore, having a gate mechanism, the decoder can dynamically determine which representations contribute to the decoding process. Experimental results on three translation tasks show that our method can significantly improve the performance of non-autoregressive MT, and surpass the baseline non-autoregressive models. On the WMT14 EN
→
DE translation task, our method achieves 27.87 BLEU with a single decoding step. This is a comparable result with the baseline autoregressive Transformer model which obtains a score of 27.8 BLEU.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10590-021-09285-x</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0922-6567 |
ispartof | Machine translation, 2021-12, Vol.35 (4), p.595-609 |
issn | 0922-6567 1573-0573 |
language | eng |
recordid | cdi_proquest_journals_2622619474 |
source | SpringerNature Journals |
subjects | Artificial Intelligence Autoregressive models Coders Computational Linguistics Computer Science Decoding Machine translation Natural Language Processing (NLP) Representations Translation methods and strategies |
title | Enhanced encoder for non-autoregressive machine translation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20encoder%20for%20non-autoregressive%20machine%20translation&rft.jtitle=Machine%20translation&rft.au=Wang,%20Shuheng&rft.date=2021-12-01&rft.volume=35&rft.issue=4&rft.spage=595&rft.epage=609&rft.pages=595-609&rft.issn=0922-6567&rft.eissn=1573-0573&rft_id=info:doi/10.1007/s10590-021-09285-x&rft_dat=%3Cproquest_cross%3E2622619474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622619474&rft_id=info:pmid/&rfr_iscdi=true |