Enhanced encoder for non-autoregressive machine translation

Non-autoregressive machine translation aims to speed up the decoding procedure by discarding the autoregressive model and generating the target words independently. Because non-autoregressive machine translation fails to exploit target-side information, the ability to accurately model source represe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine translation 2021-12, Vol.35 (4), p.595-609
Hauptverfasser: Wang, Shuheng, Shi, Shumin, Huang, Heyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 609
container_issue 4
container_start_page 595
container_title Machine translation
container_volume 35
creator Wang, Shuheng
Shi, Shumin
Huang, Heyan
description Non-autoregressive machine translation aims to speed up the decoding procedure by discarding the autoregressive model and generating the target words independently. Because non-autoregressive machine translation fails to exploit target-side information, the ability to accurately model source representations is critical. In this paper, we propose an approach to enhance the encoder’s modeling ability by using a pre-trained BERT model as an extra encoder. With a different tokenization method, the BERT encoder and the Raw encoder can model the source input from different aspects. Furthermore, having a gate mechanism, the decoder can dynamically determine which representations contribute to the decoding process. Experimental results on three translation tasks show that our method can significantly improve the performance of non-autoregressive MT, and surpass the baseline non-autoregressive models. On the WMT14 EN → DE translation task, our method achieves 27.87 BLEU with a single decoding step. This is a comparable result with the baseline autoregressive Transformer model which obtains a score of 27.8 BLEU.
doi_str_mv 10.1007/s10590-021-09285-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622619474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622619474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9c50b34d5cebf5931a3bc6a4c1863decb3ec053d69921d260925881f7503a6f83</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbLIbPEmpVSh40XPIZmfbLW1Sk63Utze6gjcvMzD838zwEXLN4JYBVHeJgdRAgTMKmteSHk_IhMlKUMjllEzylFMlVXVOLlLaAGQMxITcz_3aeodtgd6FFmPRhVj44Kk9DCHiKmJK_QcWO-vWvcdiiNanrR364C_JWWe3Ca9--5S8Pc5fZ090-bJ4nj0sqeMVDFQ7CY0oW-mw6aQWzIrGKVs6VivRomsEOpCiVVpz1nKVX5V1zbpKgrCqq8WU3Ix79zG8HzANZhMO0eeThivOFdNlVeYUH1MuhpQidmYf-52Nn4aB-ZZkRkkmSzI_kswxQ2KEUg77Fca_1f9QXy78aj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622619474</pqid></control><display><type>article</type><title>Enhanced encoder for non-autoregressive machine translation</title><source>SpringerNature Journals</source><creator>Wang, Shuheng ; Shi, Shumin ; Huang, Heyan</creator><creatorcontrib>Wang, Shuheng ; Shi, Shumin ; Huang, Heyan</creatorcontrib><description>Non-autoregressive machine translation aims to speed up the decoding procedure by discarding the autoregressive model and generating the target words independently. Because non-autoregressive machine translation fails to exploit target-side information, the ability to accurately model source representations is critical. In this paper, we propose an approach to enhance the encoder’s modeling ability by using a pre-trained BERT model as an extra encoder. With a different tokenization method, the BERT encoder and the Raw encoder can model the source input from different aspects. Furthermore, having a gate mechanism, the decoder can dynamically determine which representations contribute to the decoding process. Experimental results on three translation tasks show that our method can significantly improve the performance of non-autoregressive MT, and surpass the baseline non-autoregressive models. On the WMT14 EN → DE translation task, our method achieves 27.87 BLEU with a single decoding step. This is a comparable result with the baseline autoregressive Transformer model which obtains a score of 27.8 BLEU.</description><identifier>ISSN: 0922-6567</identifier><identifier>EISSN: 1573-0573</identifier><identifier>DOI: 10.1007/s10590-021-09285-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Autoregressive models ; Coders ; Computational Linguistics ; Computer Science ; Decoding ; Machine translation ; Natural Language Processing (NLP) ; Representations ; Translation methods and strategies</subject><ispartof>Machine translation, 2021-12, Vol.35 (4), p.595-609</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9c50b34d5cebf5931a3bc6a4c1863decb3ec053d69921d260925881f7503a6f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10590-021-09285-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10590-021-09285-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Wang, Shuheng</creatorcontrib><creatorcontrib>Shi, Shumin</creatorcontrib><creatorcontrib>Huang, Heyan</creatorcontrib><title>Enhanced encoder for non-autoregressive machine translation</title><title>Machine translation</title><addtitle>Machine Translation</addtitle><description>Non-autoregressive machine translation aims to speed up the decoding procedure by discarding the autoregressive model and generating the target words independently. Because non-autoregressive machine translation fails to exploit target-side information, the ability to accurately model source representations is critical. In this paper, we propose an approach to enhance the encoder’s modeling ability by using a pre-trained BERT model as an extra encoder. With a different tokenization method, the BERT encoder and the Raw encoder can model the source input from different aspects. Furthermore, having a gate mechanism, the decoder can dynamically determine which representations contribute to the decoding process. Experimental results on three translation tasks show that our method can significantly improve the performance of non-autoregressive MT, and surpass the baseline non-autoregressive models. On the WMT14 EN → DE translation task, our method achieves 27.87 BLEU with a single decoding step. This is a comparable result with the baseline autoregressive Transformer model which obtains a score of 27.8 BLEU.</description><subject>Artificial Intelligence</subject><subject>Autoregressive models</subject><subject>Coders</subject><subject>Computational Linguistics</subject><subject>Computer Science</subject><subject>Decoding</subject><subject>Machine translation</subject><subject>Natural Language Processing (NLP)</subject><subject>Representations</subject><subject>Translation methods and strategies</subject><issn>0922-6567</issn><issn>1573-0573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3SSbLIbPEmpVSh40XPIZmfbLW1Sk63Utze6gjcvMzD838zwEXLN4JYBVHeJgdRAgTMKmteSHk_IhMlKUMjllEzylFMlVXVOLlLaAGQMxITcz_3aeodtgd6FFmPRhVj44Kk9DCHiKmJK_QcWO-vWvcdiiNanrR364C_JWWe3Ca9--5S8Pc5fZ090-bJ4nj0sqeMVDFQ7CY0oW-mw6aQWzIrGKVs6VivRomsEOpCiVVpz1nKVX5V1zbpKgrCqq8WU3Ix79zG8HzANZhMO0eeThivOFdNlVeYUH1MuhpQidmYf-52Nn4aB-ZZkRkkmSzI_kswxQ2KEUg77Fca_1f9QXy78aj0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wang, Shuheng</creator><creator>Shi, Shumin</creator><creator>Huang, Heyan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope></search><sort><creationdate>20211201</creationdate><title>Enhanced encoder for non-autoregressive machine translation</title><author>Wang, Shuheng ; Shi, Shumin ; Huang, Heyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9c50b34d5cebf5931a3bc6a4c1863decb3ec053d69921d260925881f7503a6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Autoregressive models</topic><topic>Coders</topic><topic>Computational Linguistics</topic><topic>Computer Science</topic><topic>Decoding</topic><topic>Machine translation</topic><topic>Natural Language Processing (NLP)</topic><topic>Representations</topic><topic>Translation methods and strategies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuheng</creatorcontrib><creatorcontrib>Shi, Shumin</creatorcontrib><creatorcontrib>Huang, Heyan</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Machine translation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuheng</au><au>Shi, Shumin</au><au>Huang, Heyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced encoder for non-autoregressive machine translation</atitle><jtitle>Machine translation</jtitle><stitle>Machine Translation</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>35</volume><issue>4</issue><spage>595</spage><epage>609</epage><pages>595-609</pages><issn>0922-6567</issn><eissn>1573-0573</eissn><abstract>Non-autoregressive machine translation aims to speed up the decoding procedure by discarding the autoregressive model and generating the target words independently. Because non-autoregressive machine translation fails to exploit target-side information, the ability to accurately model source representations is critical. In this paper, we propose an approach to enhance the encoder’s modeling ability by using a pre-trained BERT model as an extra encoder. With a different tokenization method, the BERT encoder and the Raw encoder can model the source input from different aspects. Furthermore, having a gate mechanism, the decoder can dynamically determine which representations contribute to the decoding process. Experimental results on three translation tasks show that our method can significantly improve the performance of non-autoregressive MT, and surpass the baseline non-autoregressive models. On the WMT14 EN → DE translation task, our method achieves 27.87 BLEU with a single decoding step. This is a comparable result with the baseline autoregressive Transformer model which obtains a score of 27.8 BLEU.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10590-021-09285-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0922-6567
ispartof Machine translation, 2021-12, Vol.35 (4), p.595-609
issn 0922-6567
1573-0573
language eng
recordid cdi_proquest_journals_2622619474
source SpringerNature Journals
subjects Artificial Intelligence
Autoregressive models
Coders
Computational Linguistics
Computer Science
Decoding
Machine translation
Natural Language Processing (NLP)
Representations
Translation methods and strategies
title Enhanced encoder for non-autoregressive machine translation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20encoder%20for%20non-autoregressive%20machine%20translation&rft.jtitle=Machine%20translation&rft.au=Wang,%20Shuheng&rft.date=2021-12-01&rft.volume=35&rft.issue=4&rft.spage=595&rft.epage=609&rft.pages=595-609&rft.issn=0922-6567&rft.eissn=1573-0573&rft_id=info:doi/10.1007/s10590-021-09285-x&rft_dat=%3Cproquest_cross%3E2622619474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622619474&rft_id=info:pmid/&rfr_iscdi=true