Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study

Thorium dioxide (ThO2) is a promising alternative to mixed-oxide nuclear fuels due to its longer fuel cycle and resistance to proliferation. Understanding the thermal properties, in particular the thermal conductivity, under reactor conditions is critical to the success of any candidate fuel materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-01, Vol.10 (4), p.1861-1875
Hauptverfasser: Moxon, Samuel, Skelton, Jonathan, Tse, Joshua S, Flitcroft, Joseph, Togo, A, Cooke, David J, Lora da Silva, E, Harker, Robert M, Storr, Mark T, Parker, Stephen C, Molinari, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1875
container_issue 4
container_start_page 1861
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 10
creator Moxon, Samuel
Skelton, Jonathan
Tse, Joshua S
Flitcroft, Joseph
Togo, A
Cooke, David J
Lora da Silva, E
Harker, Robert M
Storr, Mark T
Parker, Stephen C
Molinari, Marco
description Thorium dioxide (ThO2) is a promising alternative to mixed-oxide nuclear fuels due to its longer fuel cycle and resistance to proliferation. Understanding the thermal properties, in particular the thermal conductivity, under reactor conditions is critical to the success of any candidate fuel material. ThO2 has a higher thermal conductivity and thus a lower operating temperature than other fuel systems. However, the presence of defects in real materials directly influences the structural dynamics and physical properties, and the impact of defects on the properties of ThO2 is largely unexplored. We have employed density-functional theory calculations to study the structure and energetics of the intrinsic Schottky and Frenkel defects in ThO2 and their impact on the thermophysical properties. We identify the anion Frenkel defect to be the most stable, and we identify characteristic spectral signatures of the defects in the phonon dispersions and infrared spectra. We further employ two approximate models to assess the impact of the defects on the thermal transport and find that both types of defect are predicted significantly to reduce the thermal conductivity. The methodology we present facilitates the prediction of the thermophysical and transport properties of defective materials at an atomistic level, and should be readily transferrable to existing and in-development nuclear fuel systems.
doi_str_mv 10.1039/d1ta10072f
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2622603467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622603467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-c960b6137bb32c4f4674017a80836733cfcb089ffe2269ea58294ff5ad1497553</originalsourceid><addsrcrecordid>eNo9jktLAzEUhYMoWGo3_oKA69Gbx-ThTopVodBF69aSySR02ppoklnMvzegeDbncjj34yB0S-CeANMPPSmGAEjqL9CMQguN5Fpc_t9KXaNFzkeoUgBC6xn62JY02jImc8b9FMznYDOOHm_tIZZymrAJPV4lF06uFpx3tmQ8BLw7bOgjNjUKeShT48dgyxBDxZSDi2nCuYz9dIOuvDlnt_jzOXpfPe-Wr8168_K2fFo3llFRGqsFdIIw2XWMWu65kByINAoUE5Ix620HSnvvKBXamVZRzb1vTU-4lm3L5ujul_uV4vfoctkf45jqmrynov4Aq0j2A7x9VZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622603467</pqid></control><display><type>article</type><title>Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Moxon, Samuel ; Skelton, Jonathan ; Tse, Joshua S ; Flitcroft, Joseph ; Togo, A ; Cooke, David J ; Lora da Silva, E ; Harker, Robert M ; Storr, Mark T ; Parker, Stephen C ; Molinari, Marco</creator><creatorcontrib>Moxon, Samuel ; Skelton, Jonathan ; Tse, Joshua S ; Flitcroft, Joseph ; Togo, A ; Cooke, David J ; Lora da Silva, E ; Harker, Robert M ; Storr, Mark T ; Parker, Stephen C ; Molinari, Marco</creatorcontrib><description>Thorium dioxide (ThO2) is a promising alternative to mixed-oxide nuclear fuels due to its longer fuel cycle and resistance to proliferation. Understanding the thermal properties, in particular the thermal conductivity, under reactor conditions is critical to the success of any candidate fuel material. ThO2 has a higher thermal conductivity and thus a lower operating temperature than other fuel systems. However, the presence of defects in real materials directly influences the structural dynamics and physical properties, and the impact of defects on the properties of ThO2 is largely unexplored. We have employed density-functional theory calculations to study the structure and energetics of the intrinsic Schottky and Frenkel defects in ThO2 and their impact on the thermophysical properties. We identify the anion Frenkel defect to be the most stable, and we identify characteristic spectral signatures of the defects in the phonon dispersions and infrared spectra. We further employ two approximate models to assess the impact of the defects on the thermal transport and find that both types of defect are predicted significantly to reduce the thermal conductivity. The methodology we present facilitates the prediction of the thermophysical and transport properties of defective materials at an atomistic level, and should be readily transferrable to existing and in-development nuclear fuel systems.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta10072f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Density functional theory ; Dynamic structural analysis ; Frenkel defects ; Fuel systems ; Heat conductivity ; Heat transfer ; Infrared signatures ; Infrared spectra ; Nuclear fuels ; Operating temperature ; Physical properties ; Spectral signatures ; Thermal conductivity ; Thermal properties ; Thermodynamic properties ; Thermophysical properties ; Thorium ; Thorium dioxide ; Thorium oxides ; Transport properties</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-01, Vol.10 (4), p.1861-1875</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-c960b6137bb32c4f4674017a80836733cfcb089ffe2269ea58294ff5ad1497553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Moxon, Samuel</creatorcontrib><creatorcontrib>Skelton, Jonathan</creatorcontrib><creatorcontrib>Tse, Joshua S</creatorcontrib><creatorcontrib>Flitcroft, Joseph</creatorcontrib><creatorcontrib>Togo, A</creatorcontrib><creatorcontrib>Cooke, David J</creatorcontrib><creatorcontrib>Lora da Silva, E</creatorcontrib><creatorcontrib>Harker, Robert M</creatorcontrib><creatorcontrib>Storr, Mark T</creatorcontrib><creatorcontrib>Parker, Stephen C</creatorcontrib><creatorcontrib>Molinari, Marco</creatorcontrib><title>Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Thorium dioxide (ThO2) is a promising alternative to mixed-oxide nuclear fuels due to its longer fuel cycle and resistance to proliferation. Understanding the thermal properties, in particular the thermal conductivity, under reactor conditions is critical to the success of any candidate fuel material. ThO2 has a higher thermal conductivity and thus a lower operating temperature than other fuel systems. However, the presence of defects in real materials directly influences the structural dynamics and physical properties, and the impact of defects on the properties of ThO2 is largely unexplored. We have employed density-functional theory calculations to study the structure and energetics of the intrinsic Schottky and Frenkel defects in ThO2 and their impact on the thermophysical properties. We identify the anion Frenkel defect to be the most stable, and we identify characteristic spectral signatures of the defects in the phonon dispersions and infrared spectra. We further employ two approximate models to assess the impact of the defects on the thermal transport and find that both types of defect are predicted significantly to reduce the thermal conductivity. The methodology we present facilitates the prediction of the thermophysical and transport properties of defective materials at an atomistic level, and should be readily transferrable to existing and in-development nuclear fuel systems.</description><subject>Density functional theory</subject><subject>Dynamic structural analysis</subject><subject>Frenkel defects</subject><subject>Fuel systems</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Infrared signatures</subject><subject>Infrared spectra</subject><subject>Nuclear fuels</subject><subject>Operating temperature</subject><subject>Physical properties</subject><subject>Spectral signatures</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermophysical properties</subject><subject>Thorium</subject><subject>Thorium dioxide</subject><subject>Thorium oxides</subject><subject>Transport properties</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jktLAzEUhYMoWGo3_oKA69Gbx-ThTopVodBF69aSySR02ppoklnMvzegeDbncjj34yB0S-CeANMPPSmGAEjqL9CMQguN5Fpc_t9KXaNFzkeoUgBC6xn62JY02jImc8b9FMznYDOOHm_tIZZymrAJPV4lF06uFpx3tmQ8BLw7bOgjNjUKeShT48dgyxBDxZSDi2nCuYz9dIOuvDlnt_jzOXpfPe-Wr8168_K2fFo3llFRGqsFdIIw2XWMWu65kByINAoUE5Ix620HSnvvKBXamVZRzb1vTU-4lm3L5ujul_uV4vfoctkf45jqmrynov4Aq0j2A7x9VZM</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Moxon, Samuel</creator><creator>Skelton, Jonathan</creator><creator>Tse, Joshua S</creator><creator>Flitcroft, Joseph</creator><creator>Togo, A</creator><creator>Cooke, David J</creator><creator>Lora da Silva, E</creator><creator>Harker, Robert M</creator><creator>Storr, Mark T</creator><creator>Parker, Stephen C</creator><creator>Molinari, Marco</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220101</creationdate><title>Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study</title><author>Moxon, Samuel ; Skelton, Jonathan ; Tse, Joshua S ; Flitcroft, Joseph ; Togo, A ; Cooke, David J ; Lora da Silva, E ; Harker, Robert M ; Storr, Mark T ; Parker, Stephen C ; Molinari, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-c960b6137bb32c4f4674017a80836733cfcb089ffe2269ea58294ff5ad1497553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Density functional theory</topic><topic>Dynamic structural analysis</topic><topic>Frenkel defects</topic><topic>Fuel systems</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Infrared signatures</topic><topic>Infrared spectra</topic><topic>Nuclear fuels</topic><topic>Operating temperature</topic><topic>Physical properties</topic><topic>Spectral signatures</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermophysical properties</topic><topic>Thorium</topic><topic>Thorium dioxide</topic><topic>Thorium oxides</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moxon, Samuel</creatorcontrib><creatorcontrib>Skelton, Jonathan</creatorcontrib><creatorcontrib>Tse, Joshua S</creatorcontrib><creatorcontrib>Flitcroft, Joseph</creatorcontrib><creatorcontrib>Togo, A</creatorcontrib><creatorcontrib>Cooke, David J</creatorcontrib><creatorcontrib>Lora da Silva, E</creatorcontrib><creatorcontrib>Harker, Robert M</creatorcontrib><creatorcontrib>Storr, Mark T</creatorcontrib><creatorcontrib>Parker, Stephen C</creatorcontrib><creatorcontrib>Molinari, Marco</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moxon, Samuel</au><au>Skelton, Jonathan</au><au>Tse, Joshua S</au><au>Flitcroft, Joseph</au><au>Togo, A</au><au>Cooke, David J</au><au>Lora da Silva, E</au><au>Harker, Robert M</au><au>Storr, Mark T</au><au>Parker, Stephen C</au><au>Molinari, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><issue>4</issue><spage>1861</spage><epage>1875</epage><pages>1861-1875</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Thorium dioxide (ThO2) is a promising alternative to mixed-oxide nuclear fuels due to its longer fuel cycle and resistance to proliferation. Understanding the thermal properties, in particular the thermal conductivity, under reactor conditions is critical to the success of any candidate fuel material. ThO2 has a higher thermal conductivity and thus a lower operating temperature than other fuel systems. However, the presence of defects in real materials directly influences the structural dynamics and physical properties, and the impact of defects on the properties of ThO2 is largely unexplored. We have employed density-functional theory calculations to study the structure and energetics of the intrinsic Schottky and Frenkel defects in ThO2 and their impact on the thermophysical properties. We identify the anion Frenkel defect to be the most stable, and we identify characteristic spectral signatures of the defects in the phonon dispersions and infrared spectra. We further employ two approximate models to assess the impact of the defects on the thermal transport and find that both types of defect are predicted significantly to reduce the thermal conductivity. The methodology we present facilitates the prediction of the thermophysical and transport properties of defective materials at an atomistic level, and should be readily transferrable to existing and in-development nuclear fuel systems.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta10072f</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-01, Vol.10 (4), p.1861-1875
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2622603467
source Royal Society Of Chemistry Journals 2008-
subjects Density functional theory
Dynamic structural analysis
Frenkel defects
Fuel systems
Heat conductivity
Heat transfer
Infrared signatures
Infrared spectra
Nuclear fuels
Operating temperature
Physical properties
Spectral signatures
Thermal conductivity
Thermal properties
Thermodynamic properties
Thermophysical properties
Thorium
Thorium dioxide
Thorium oxides
Transport properties
title Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20dynamics%20of%20Schottky%20and%20Frenkel%20defects%20in%20ThO2:%20a%20density-functional%20theory%20study&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Moxon,%20Samuel&rft.date=2022-01-01&rft.volume=10&rft.issue=4&rft.spage=1861&rft.epage=1875&rft.pages=1861-1875&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta10072f&rft_dat=%3Cproquest%3E2622603467%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622603467&rft_id=info:pmid/&rfr_iscdi=true