Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study
Thorium dioxide (ThO2) is a promising alternative to mixed-oxide nuclear fuels due to its longer fuel cycle and resistance to proliferation. Understanding the thermal properties, in particular the thermal conductivity, under reactor conditions is critical to the success of any candidate fuel materia...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-01, Vol.10 (4), p.1861-1875 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1875 |
---|---|
container_issue | 4 |
container_start_page | 1861 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 10 |
creator | Moxon, Samuel Skelton, Jonathan Tse, Joshua S Flitcroft, Joseph Togo, A Cooke, David J Lora da Silva, E Harker, Robert M Storr, Mark T Parker, Stephen C Molinari, Marco |
description | Thorium dioxide (ThO2) is a promising alternative to mixed-oxide nuclear fuels due to its longer fuel cycle and resistance to proliferation. Understanding the thermal properties, in particular the thermal conductivity, under reactor conditions is critical to the success of any candidate fuel material. ThO2 has a higher thermal conductivity and thus a lower operating temperature than other fuel systems. However, the presence of defects in real materials directly influences the structural dynamics and physical properties, and the impact of defects on the properties of ThO2 is largely unexplored. We have employed density-functional theory calculations to study the structure and energetics of the intrinsic Schottky and Frenkel defects in ThO2 and their impact on the thermophysical properties. We identify the anion Frenkel defect to be the most stable, and we identify characteristic spectral signatures of the defects in the phonon dispersions and infrared spectra. We further employ two approximate models to assess the impact of the defects on the thermal transport and find that both types of defect are predicted significantly to reduce the thermal conductivity. The methodology we present facilitates the prediction of the thermophysical and transport properties of defective materials at an atomistic level, and should be readily transferrable to existing and in-development nuclear fuel systems. |
doi_str_mv | 10.1039/d1ta10072f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2622603467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622603467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-c960b6137bb32c4f4674017a80836733cfcb089ffe2269ea58294ff5ad1497553</originalsourceid><addsrcrecordid>eNo9jktLAzEUhYMoWGo3_oKA69Gbx-ThTopVodBF69aSySR02ppoklnMvzegeDbncjj34yB0S-CeANMPPSmGAEjqL9CMQguN5Fpc_t9KXaNFzkeoUgBC6xn62JY02jImc8b9FMznYDOOHm_tIZZymrAJPV4lF06uFpx3tmQ8BLw7bOgjNjUKeShT48dgyxBDxZSDi2nCuYz9dIOuvDlnt_jzOXpfPe-Wr8168_K2fFo3llFRGqsFdIIw2XWMWu65kByINAoUE5Ix620HSnvvKBXamVZRzb1vTU-4lm3L5ujul_uV4vfoctkf45jqmrynov4Aq0j2A7x9VZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622603467</pqid></control><display><type>article</type><title>Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Moxon, Samuel ; Skelton, Jonathan ; Tse, Joshua S ; Flitcroft, Joseph ; Togo, A ; Cooke, David J ; Lora da Silva, E ; Harker, Robert M ; Storr, Mark T ; Parker, Stephen C ; Molinari, Marco</creator><creatorcontrib>Moxon, Samuel ; Skelton, Jonathan ; Tse, Joshua S ; Flitcroft, Joseph ; Togo, A ; Cooke, David J ; Lora da Silva, E ; Harker, Robert M ; Storr, Mark T ; Parker, Stephen C ; Molinari, Marco</creatorcontrib><description>Thorium dioxide (ThO2) is a promising alternative to mixed-oxide nuclear fuels due to its longer fuel cycle and resistance to proliferation. Understanding the thermal properties, in particular the thermal conductivity, under reactor conditions is critical to the success of any candidate fuel material. ThO2 has a higher thermal conductivity and thus a lower operating temperature than other fuel systems. However, the presence of defects in real materials directly influences the structural dynamics and physical properties, and the impact of defects on the properties of ThO2 is largely unexplored. We have employed density-functional theory calculations to study the structure and energetics of the intrinsic Schottky and Frenkel defects in ThO2 and their impact on the thermophysical properties. We identify the anion Frenkel defect to be the most stable, and we identify characteristic spectral signatures of the defects in the phonon dispersions and infrared spectra. We further employ two approximate models to assess the impact of the defects on the thermal transport and find that both types of defect are predicted significantly to reduce the thermal conductivity. The methodology we present facilitates the prediction of the thermophysical and transport properties of defective materials at an atomistic level, and should be readily transferrable to existing and in-development nuclear fuel systems.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta10072f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Density functional theory ; Dynamic structural analysis ; Frenkel defects ; Fuel systems ; Heat conductivity ; Heat transfer ; Infrared signatures ; Infrared spectra ; Nuclear fuels ; Operating temperature ; Physical properties ; Spectral signatures ; Thermal conductivity ; Thermal properties ; Thermodynamic properties ; Thermophysical properties ; Thorium ; Thorium dioxide ; Thorium oxides ; Transport properties</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-01, Vol.10 (4), p.1861-1875</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-c960b6137bb32c4f4674017a80836733cfcb089ffe2269ea58294ff5ad1497553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Moxon, Samuel</creatorcontrib><creatorcontrib>Skelton, Jonathan</creatorcontrib><creatorcontrib>Tse, Joshua S</creatorcontrib><creatorcontrib>Flitcroft, Joseph</creatorcontrib><creatorcontrib>Togo, A</creatorcontrib><creatorcontrib>Cooke, David J</creatorcontrib><creatorcontrib>Lora da Silva, E</creatorcontrib><creatorcontrib>Harker, Robert M</creatorcontrib><creatorcontrib>Storr, Mark T</creatorcontrib><creatorcontrib>Parker, Stephen C</creatorcontrib><creatorcontrib>Molinari, Marco</creatorcontrib><title>Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Thorium dioxide (ThO2) is a promising alternative to mixed-oxide nuclear fuels due to its longer fuel cycle and resistance to proliferation. Understanding the thermal properties, in particular the thermal conductivity, under reactor conditions is critical to the success of any candidate fuel material. ThO2 has a higher thermal conductivity and thus a lower operating temperature than other fuel systems. However, the presence of defects in real materials directly influences the structural dynamics and physical properties, and the impact of defects on the properties of ThO2 is largely unexplored. We have employed density-functional theory calculations to study the structure and energetics of the intrinsic Schottky and Frenkel defects in ThO2 and their impact on the thermophysical properties. We identify the anion Frenkel defect to be the most stable, and we identify characteristic spectral signatures of the defects in the phonon dispersions and infrared spectra. We further employ two approximate models to assess the impact of the defects on the thermal transport and find that both types of defect are predicted significantly to reduce the thermal conductivity. The methodology we present facilitates the prediction of the thermophysical and transport properties of defective materials at an atomistic level, and should be readily transferrable to existing and in-development nuclear fuel systems.</description><subject>Density functional theory</subject><subject>Dynamic structural analysis</subject><subject>Frenkel defects</subject><subject>Fuel systems</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Infrared signatures</subject><subject>Infrared spectra</subject><subject>Nuclear fuels</subject><subject>Operating temperature</subject><subject>Physical properties</subject><subject>Spectral signatures</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermophysical properties</subject><subject>Thorium</subject><subject>Thorium dioxide</subject><subject>Thorium oxides</subject><subject>Transport properties</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9jktLAzEUhYMoWGo3_oKA69Gbx-ThTopVodBF69aSySR02ppoklnMvzegeDbncjj34yB0S-CeANMPPSmGAEjqL9CMQguN5Fpc_t9KXaNFzkeoUgBC6xn62JY02jImc8b9FMznYDOOHm_tIZZymrAJPV4lF06uFpx3tmQ8BLw7bOgjNjUKeShT48dgyxBDxZSDi2nCuYz9dIOuvDlnt_jzOXpfPe-Wr8168_K2fFo3llFRGqsFdIIw2XWMWu65kByINAoUE5Ix620HSnvvKBXamVZRzb1vTU-4lm3L5ujul_uV4vfoctkf45jqmrynov4Aq0j2A7x9VZM</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Moxon, Samuel</creator><creator>Skelton, Jonathan</creator><creator>Tse, Joshua S</creator><creator>Flitcroft, Joseph</creator><creator>Togo, A</creator><creator>Cooke, David J</creator><creator>Lora da Silva, E</creator><creator>Harker, Robert M</creator><creator>Storr, Mark T</creator><creator>Parker, Stephen C</creator><creator>Molinari, Marco</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220101</creationdate><title>Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study</title><author>Moxon, Samuel ; Skelton, Jonathan ; Tse, Joshua S ; Flitcroft, Joseph ; Togo, A ; Cooke, David J ; Lora da Silva, E ; Harker, Robert M ; Storr, Mark T ; Parker, Stephen C ; Molinari, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-c960b6137bb32c4f4674017a80836733cfcb089ffe2269ea58294ff5ad1497553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Density functional theory</topic><topic>Dynamic structural analysis</topic><topic>Frenkel defects</topic><topic>Fuel systems</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Infrared signatures</topic><topic>Infrared spectra</topic><topic>Nuclear fuels</topic><topic>Operating temperature</topic><topic>Physical properties</topic><topic>Spectral signatures</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermophysical properties</topic><topic>Thorium</topic><topic>Thorium dioxide</topic><topic>Thorium oxides</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moxon, Samuel</creatorcontrib><creatorcontrib>Skelton, Jonathan</creatorcontrib><creatorcontrib>Tse, Joshua S</creatorcontrib><creatorcontrib>Flitcroft, Joseph</creatorcontrib><creatorcontrib>Togo, A</creatorcontrib><creatorcontrib>Cooke, David J</creatorcontrib><creatorcontrib>Lora da Silva, E</creatorcontrib><creatorcontrib>Harker, Robert M</creatorcontrib><creatorcontrib>Storr, Mark T</creatorcontrib><creatorcontrib>Parker, Stephen C</creatorcontrib><creatorcontrib>Molinari, Marco</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moxon, Samuel</au><au>Skelton, Jonathan</au><au>Tse, Joshua S</au><au>Flitcroft, Joseph</au><au>Togo, A</au><au>Cooke, David J</au><au>Lora da Silva, E</au><au>Harker, Robert M</au><au>Storr, Mark T</au><au>Parker, Stephen C</au><au>Molinari, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><issue>4</issue><spage>1861</spage><epage>1875</epage><pages>1861-1875</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Thorium dioxide (ThO2) is a promising alternative to mixed-oxide nuclear fuels due to its longer fuel cycle and resistance to proliferation. Understanding the thermal properties, in particular the thermal conductivity, under reactor conditions is critical to the success of any candidate fuel material. ThO2 has a higher thermal conductivity and thus a lower operating temperature than other fuel systems. However, the presence of defects in real materials directly influences the structural dynamics and physical properties, and the impact of defects on the properties of ThO2 is largely unexplored. We have employed density-functional theory calculations to study the structure and energetics of the intrinsic Schottky and Frenkel defects in ThO2 and their impact on the thermophysical properties. We identify the anion Frenkel defect to be the most stable, and we identify characteristic spectral signatures of the defects in the phonon dispersions and infrared spectra. We further employ two approximate models to assess the impact of the defects on the thermal transport and find that both types of defect are predicted significantly to reduce the thermal conductivity. The methodology we present facilitates the prediction of the thermophysical and transport properties of defective materials at an atomistic level, and should be readily transferrable to existing and in-development nuclear fuel systems.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta10072f</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-01, Vol.10 (4), p.1861-1875 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2622603467 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Density functional theory Dynamic structural analysis Frenkel defects Fuel systems Heat conductivity Heat transfer Infrared signatures Infrared spectra Nuclear fuels Operating temperature Physical properties Spectral signatures Thermal conductivity Thermal properties Thermodynamic properties Thermophysical properties Thorium Thorium dioxide Thorium oxides Transport properties |
title | Structural dynamics of Schottky and Frenkel defects in ThO2: a density-functional theory study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20dynamics%20of%20Schottky%20and%20Frenkel%20defects%20in%20ThO2:%20a%20density-functional%20theory%20study&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Moxon,%20Samuel&rft.date=2022-01-01&rft.volume=10&rft.issue=4&rft.spage=1861&rft.epage=1875&rft.pages=1861-1875&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta10072f&rft_dat=%3Cproquest%3E2622603467%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622603467&rft_id=info:pmid/&rfr_iscdi=true |