Topology optimization of structures made of fiber-reinforced plates
This work introduces a topology optimization method for the design of structures composed of fiber-reinforced, rectangular plates. Each of the plates has a predetermined, nondesignable reinforcement, and the proposed method determines an optimal layout of the plates within a prescribed three-dimensi...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2022-02, Vol.65 (2), Article 58 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Structural and multidisciplinary optimization |
container_volume | 65 |
creator | Smith, Hollis Norato, Julián |
description | This work introduces a topology optimization method for the design of structures composed of fiber-reinforced, rectangular plates. Each of the plates has a predetermined, nondesignable reinforcement, and the proposed method determines an optimal layout of the plates within a prescribed three-dimensional region. A plate is modeled using a homogeneous, anisotropic material, whose properties are aligned relative to the plate’s orientation. This work builds upon existing geometry projection techniques with three notable additions. First, it introduces a novel parameterization of the plate orientation based on quaternions, which avoids numerical instabilities and
2
π
-periodicity issues. Second, an overlap constraint for plates is formulated to prevent plate intersections that would make manufacturing of the structure impractical. Finally, the finite element assembly and sensitivity analysis are substantially accelerated by exploiting the structure of the material interpolation. This strategy is facilitated by the use of an adaptive mesh refinement technique. The efficacy of the proposed method is demonstrated with compliance minimization examples. The examples show the importance of considering material anisotropy in the design of composite structures. Moreover, it is demonstrated that naively replacing the material of the plates in an optimally stiff design made of an isotropic material with a composite can result in suboptimal performance. |
doi_str_mv | 10.1007/s00158-021-03164-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622380015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622380015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-712362544782c55663deaeadbd919925ff55941c806b34cb6f462811afa930453</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FMvpoeZfELFrys4C2kabJ02W1qkh7qr7drRW-eZhie9x14ELoGcguElHeJEBAKEwqYMJAcjydoARIEBq7U6e9evp-ji5R2hBBFeLVAq03owz5sxyL0uT20nya3oSuCL1KOg81DdKk4mMYdT76tXcTRtZ0P0bqm6Pcmu3SJzrzZJ3f1M5fo7fFhs3rG69enl9X9GlsGVcYlUCap4LxU1AohJWuccaapmwqqigrvhag4WEVkzbitpeeSKgDjTcUIF2yJbubePoaPwaWsd2GI3fRSU0kpU0cJE0VnysaQUnRe97E9mDhqIPooS8-y9CRLf8vS4xRicyhNcLd18a_6n9QXBztsrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622380015</pqid></control><display><type>article</type><title>Topology optimization of structures made of fiber-reinforced plates</title><source>SpringerNature Journals</source><creator>Smith, Hollis ; Norato, Julián</creator><creatorcontrib>Smith, Hollis ; Norato, Julián</creatorcontrib><description>This work introduces a topology optimization method for the design of structures composed of fiber-reinforced, rectangular plates. Each of the plates has a predetermined, nondesignable reinforcement, and the proposed method determines an optimal layout of the plates within a prescribed three-dimensional region. A plate is modeled using a homogeneous, anisotropic material, whose properties are aligned relative to the plate’s orientation. This work builds upon existing geometry projection techniques with three notable additions. First, it introduces a novel parameterization of the plate orientation based on quaternions, which avoids numerical instabilities and
2
π
-periodicity issues. Second, an overlap constraint for plates is formulated to prevent plate intersections that would make manufacturing of the structure impractical. Finally, the finite element assembly and sensitivity analysis are substantially accelerated by exploiting the structure of the material interpolation. This strategy is facilitated by the use of an adaptive mesh refinement technique. The efficacy of the proposed method is demonstrated with compliance minimization examples. The examples show the importance of considering material anisotropy in the design of composite structures. Moreover, it is demonstrated that naively replacing the material of the plates in an optimally stiff design made of an isotropic material with a composite can result in suboptimal performance.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-021-03164-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Anisotropy ; Composite materials ; Composite structures ; Computational Mathematics and Numerical Analysis ; Design optimization ; Engineering ; Engineering Design ; Fiber reinforced materials ; Finite element method ; Geometry ; Grid refinement (mathematics) ; Interpolation ; Isotropic material ; Manufacturing ; Methods ; Optimization ; Parameterization ; Quaternions ; Rectangular plates ; Reinforced plates ; Research Paper ; Sensitivity analysis ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2022-02, Vol.65 (2), Article 58</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-712362544782c55663deaeadbd919925ff55941c806b34cb6f462811afa930453</citedby><cites>FETCH-LOGICAL-c319t-712362544782c55663deaeadbd919925ff55941c806b34cb6f462811afa930453</cites><orcidid>0000-0002-3270-9650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-021-03164-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-021-03164-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Smith, Hollis</creatorcontrib><creatorcontrib>Norato, Julián</creatorcontrib><title>Topology optimization of structures made of fiber-reinforced plates</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This work introduces a topology optimization method for the design of structures composed of fiber-reinforced, rectangular plates. Each of the plates has a predetermined, nondesignable reinforcement, and the proposed method determines an optimal layout of the plates within a prescribed three-dimensional region. A plate is modeled using a homogeneous, anisotropic material, whose properties are aligned relative to the plate’s orientation. This work builds upon existing geometry projection techniques with three notable additions. First, it introduces a novel parameterization of the plate orientation based on quaternions, which avoids numerical instabilities and
2
π
-periodicity issues. Second, an overlap constraint for plates is formulated to prevent plate intersections that would make manufacturing of the structure impractical. Finally, the finite element assembly and sensitivity analysis are substantially accelerated by exploiting the structure of the material interpolation. This strategy is facilitated by the use of an adaptive mesh refinement technique. The efficacy of the proposed method is demonstrated with compliance minimization examples. The examples show the importance of considering material anisotropy in the design of composite structures. Moreover, it is demonstrated that naively replacing the material of the plates in an optimally stiff design made of an isotropic material with a composite can result in suboptimal performance.</description><subject>Aluminum</subject><subject>Anisotropy</subject><subject>Composite materials</subject><subject>Composite structures</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Fiber reinforced materials</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Grid refinement (mathematics)</subject><subject>Interpolation</subject><subject>Isotropic material</subject><subject>Manufacturing</subject><subject>Methods</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Quaternions</subject><subject>Rectangular plates</subject><subject>Reinforced plates</subject><subject>Research Paper</subject><subject>Sensitivity analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FMvpoeZfELFrys4C2kabJ02W1qkh7qr7drRW-eZhie9x14ELoGcguElHeJEBAKEwqYMJAcjydoARIEBq7U6e9evp-ji5R2hBBFeLVAq03owz5sxyL0uT20nya3oSuCL1KOg81DdKk4mMYdT76tXcTRtZ0P0bqm6Pcmu3SJzrzZJ3f1M5fo7fFhs3rG69enl9X9GlsGVcYlUCap4LxU1AohJWuccaapmwqqigrvhag4WEVkzbitpeeSKgDjTcUIF2yJbubePoaPwaWsd2GI3fRSU0kpU0cJE0VnysaQUnRe97E9mDhqIPooS8-y9CRLf8vS4xRicyhNcLd18a_6n9QXBztsrQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Smith, Hollis</creator><creator>Norato, Julián</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3270-9650</orcidid></search><sort><creationdate>20220201</creationdate><title>Topology optimization of structures made of fiber-reinforced plates</title><author>Smith, Hollis ; Norato, Julián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-712362544782c55663deaeadbd919925ff55941c806b34cb6f462811afa930453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Anisotropy</topic><topic>Composite materials</topic><topic>Composite structures</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Fiber reinforced materials</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Grid refinement (mathematics)</topic><topic>Interpolation</topic><topic>Isotropic material</topic><topic>Manufacturing</topic><topic>Methods</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Quaternions</topic><topic>Rectangular plates</topic><topic>Reinforced plates</topic><topic>Research Paper</topic><topic>Sensitivity analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Hollis</creatorcontrib><creatorcontrib>Norato, Julián</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Hollis</au><au>Norato, Julián</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization of structures made of fiber-reinforced plates</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>65</volume><issue>2</issue><artnum>58</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This work introduces a topology optimization method for the design of structures composed of fiber-reinforced, rectangular plates. Each of the plates has a predetermined, nondesignable reinforcement, and the proposed method determines an optimal layout of the plates within a prescribed three-dimensional region. A plate is modeled using a homogeneous, anisotropic material, whose properties are aligned relative to the plate’s orientation. This work builds upon existing geometry projection techniques with three notable additions. First, it introduces a novel parameterization of the plate orientation based on quaternions, which avoids numerical instabilities and
2
π
-periodicity issues. Second, an overlap constraint for plates is formulated to prevent plate intersections that would make manufacturing of the structure impractical. Finally, the finite element assembly and sensitivity analysis are substantially accelerated by exploiting the structure of the material interpolation. This strategy is facilitated by the use of an adaptive mesh refinement technique. The efficacy of the proposed method is demonstrated with compliance minimization examples. The examples show the importance of considering material anisotropy in the design of composite structures. Moreover, it is demonstrated that naively replacing the material of the plates in an optimally stiff design made of an isotropic material with a composite can result in suboptimal performance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-021-03164-y</doi><orcidid>https://orcid.org/0000-0002-3270-9650</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2022-02, Vol.65 (2), Article 58 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2622380015 |
source | SpringerNature Journals |
subjects | Aluminum Anisotropy Composite materials Composite structures Computational Mathematics and Numerical Analysis Design optimization Engineering Engineering Design Fiber reinforced materials Finite element method Geometry Grid refinement (mathematics) Interpolation Isotropic material Manufacturing Methods Optimization Parameterization Quaternions Rectangular plates Reinforced plates Research Paper Sensitivity analysis Theoretical and Applied Mechanics Topology optimization |
title | Topology optimization of structures made of fiber-reinforced plates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20of%20structures%20made%20of%20fiber-reinforced%20plates&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Smith,%20Hollis&rft.date=2022-02-01&rft.volume=65&rft.issue=2&rft.artnum=58&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-021-03164-y&rft_dat=%3Cproquest_cross%3E2622380015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622380015&rft_id=info:pmid/&rfr_iscdi=true |