Comparative analysis on macroscale material models for the prediction of masonry in-plane behavior
Simulating the mechanical behavior of masonry structures with reasonable approximation using numerical models is a complex issue, mainly due to the uncertainties affecting the selection of mechanical parameters. Since destructive testing is in some cases impossible, the Italian building code provide...
Gespeichert in:
Veröffentlicht in: | Bulletin of earthquake engineering 2022, Vol.20 (2), p.963-996 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 996 |
---|---|
container_issue | 2 |
container_start_page | 963 |
container_title | Bulletin of earthquake engineering |
container_volume | 20 |
creator | Zizi, Mattia Chisari, Corrado Rouhi, Jafar De Matteis, Gianfranco |
description | Simulating the mechanical behavior of masonry structures with reasonable approximation using numerical models is a complex issue, mainly due to the uncertainties affecting the selection of mechanical parameters. Since destructive testing is in some cases impossible, the Italian building code provides ranges for the parameters based on masonry type to be used in numerical and analytical estimations of the capacity curves of masonry panels, suggesting the Equivalent Frame Method approach for the numerical modelling. In this paper, the application of these ranges to three more sophisticated material descriptions to be used in 3D representations (i.e. Double Drucker Prager, Total strain crack and Concrete damage plasticity models) is investigated, with reference to a heterogeneous set of experimental tests performed in the past. In particular, numerical, analytical and experimental results are compared with the aim, on the one hand, of examining the suitability of such ranges when a macroscale approach is adopted, while, on the other, investigating their capability in predicting the real behavior of masonry structures. The comparisons are performed in terms of failure mode, initial stiffness, maximum horizontal load and ultimate drift. The results provide a critical appraisal of the predictive capability of the considered models. They also show that the application of material parameter ranges based on typological features to numerical models may be problematic and entails a limited improvement in the predictions compared to the analytical formulations. |
doi_str_mv | 10.1007/s10518-021-01275-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622379309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622379309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-15c2393541f4bd952f8845c5c4c008a192810111238b3d9c393702dc4e90b8473</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYsoOI7-AVcB19H3kmbaLGXwCwQ3Cu5CmqZOhrapSWeY-fdmpoI7V-8uzr3wTpZdI9wiQHEXEQSWFBhSQFYIujvJZigKTjEXi9NjBlos8PM8u4hxDcBEIWGWVUvfDTro0W0t0b1u99FF4nvSaRN8NLq1KY42ON2Szte2jaTxgYwrS4Zga2dGl2jfJCr6PuyJ6-nQ6t6Syq701vlwmZ01uo326vfOs4_Hh_flM319e3pZ3r9Sw1GOFIVhXHKRY5NXtRSsKctcGGFyA1BqlKxEQETGy4rX0iS2AFab3Eqoyrzg8-xm2h2C_97YOKq134T0UlRswRgvJAeZKDZRh_disI0agut02CsEdXCpJpcquVRHl2qXSnwqxQT3Xzb8Tf_T-gEAl3d7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622379309</pqid></control><display><type>article</type><title>Comparative analysis on macroscale material models for the prediction of masonry in-plane behavior</title><source>Springer Nature - Complete Springer Journals</source><creator>Zizi, Mattia ; Chisari, Corrado ; Rouhi, Jafar ; De Matteis, Gianfranco</creator><creatorcontrib>Zizi, Mattia ; Chisari, Corrado ; Rouhi, Jafar ; De Matteis, Gianfranco</creatorcontrib><description>Simulating the mechanical behavior of masonry structures with reasonable approximation using numerical models is a complex issue, mainly due to the uncertainties affecting the selection of mechanical parameters. Since destructive testing is in some cases impossible, the Italian building code provides ranges for the parameters based on masonry type to be used in numerical and analytical estimations of the capacity curves of masonry panels, suggesting the Equivalent Frame Method approach for the numerical modelling. In this paper, the application of these ranges to three more sophisticated material descriptions to be used in 3D representations (i.e. Double Drucker Prager, Total strain crack and Concrete damage plasticity models) is investigated, with reference to a heterogeneous set of experimental tests performed in the past. In particular, numerical, analytical and experimental results are compared with the aim, on the one hand, of examining the suitability of such ranges when a macroscale approach is adopted, while, on the other, investigating their capability in predicting the real behavior of masonry structures. The comparisons are performed in terms of failure mode, initial stiffness, maximum horizontal load and ultimate drift. The results provide a critical appraisal of the predictive capability of the considered models. They also show that the application of material parameter ranges based on typological features to numerical models may be problematic and entails a limited improvement in the predictions compared to the analytical formulations.</description><identifier>ISSN: 1570-761X</identifier><identifier>EISSN: 1573-1456</identifier><identifier>DOI: 10.1007/s10518-021-01275-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Approximation ; Building codes ; Civil Engineering ; Comparative analysis ; Destructive testing ; Earth and Environmental Science ; Earth Sciences ; Environmental Engineering/Biotechnology ; Failure modes ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Masonry ; Mathematical models ; Mechanical properties ; Modelling ; Numerical models ; Original Article ; Parameters ; Stiffness ; Structural Geology</subject><ispartof>Bulletin of earthquake engineering, 2022, Vol.20 (2), p.963-996</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-15c2393541f4bd952f8845c5c4c008a192810111238b3d9c393702dc4e90b8473</citedby><cites>FETCH-LOGICAL-c319t-15c2393541f4bd952f8845c5c4c008a192810111238b3d9c393702dc4e90b8473</cites><orcidid>0000-0002-1476-5763 ; 0000-0002-1638-8017 ; 0000-0001-7413-6769 ; 0000-0002-8518-3517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10518-021-01275-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10518-021-01275-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27904,27905,41468,42537,51299</link.rule.ids></links><search><creatorcontrib>Zizi, Mattia</creatorcontrib><creatorcontrib>Chisari, Corrado</creatorcontrib><creatorcontrib>Rouhi, Jafar</creatorcontrib><creatorcontrib>De Matteis, Gianfranco</creatorcontrib><title>Comparative analysis on macroscale material models for the prediction of masonry in-plane behavior</title><title>Bulletin of earthquake engineering</title><addtitle>Bull Earthquake Eng</addtitle><description>Simulating the mechanical behavior of masonry structures with reasonable approximation using numerical models is a complex issue, mainly due to the uncertainties affecting the selection of mechanical parameters. Since destructive testing is in some cases impossible, the Italian building code provides ranges for the parameters based on masonry type to be used in numerical and analytical estimations of the capacity curves of masonry panels, suggesting the Equivalent Frame Method approach for the numerical modelling. In this paper, the application of these ranges to three more sophisticated material descriptions to be used in 3D representations (i.e. Double Drucker Prager, Total strain crack and Concrete damage plasticity models) is investigated, with reference to a heterogeneous set of experimental tests performed in the past. In particular, numerical, analytical and experimental results are compared with the aim, on the one hand, of examining the suitability of such ranges when a macroscale approach is adopted, while, on the other, investigating their capability in predicting the real behavior of masonry structures. The comparisons are performed in terms of failure mode, initial stiffness, maximum horizontal load and ultimate drift. The results provide a critical appraisal of the predictive capability of the considered models. They also show that the application of material parameter ranges based on typological features to numerical models may be problematic and entails a limited improvement in the predictions compared to the analytical formulations.</description><subject>Approximation</subject><subject>Building codes</subject><subject>Civil Engineering</subject><subject>Comparative analysis</subject><subject>Destructive testing</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Failure modes</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Masonry</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Modelling</subject><subject>Numerical models</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Stiffness</subject><subject>Structural Geology</subject><issn>1570-761X</issn><issn>1573-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAURYsoOI7-AVcB19H3kmbaLGXwCwQ3Cu5CmqZOhrapSWeY-fdmpoI7V-8uzr3wTpZdI9wiQHEXEQSWFBhSQFYIujvJZigKTjEXi9NjBlos8PM8u4hxDcBEIWGWVUvfDTro0W0t0b1u99FF4nvSaRN8NLq1KY42ON2Szte2jaTxgYwrS4Zga2dGl2jfJCr6PuyJ6-nQ6t6Syq701vlwmZ01uo326vfOs4_Hh_flM319e3pZ3r9Sw1GOFIVhXHKRY5NXtRSsKctcGGFyA1BqlKxEQETGy4rX0iS2AFab3Eqoyrzg8-xm2h2C_97YOKq134T0UlRswRgvJAeZKDZRh_disI0agut02CsEdXCpJpcquVRHl2qXSnwqxQT3Xzb8Tf_T-gEAl3d7</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zizi, Mattia</creator><creator>Chisari, Corrado</creator><creator>Rouhi, Jafar</creator><creator>De Matteis, Gianfranco</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1476-5763</orcidid><orcidid>https://orcid.org/0000-0002-1638-8017</orcidid><orcidid>https://orcid.org/0000-0001-7413-6769</orcidid><orcidid>https://orcid.org/0000-0002-8518-3517</orcidid></search><sort><creationdate>2022</creationdate><title>Comparative analysis on macroscale material models for the prediction of masonry in-plane behavior</title><author>Zizi, Mattia ; Chisari, Corrado ; Rouhi, Jafar ; De Matteis, Gianfranco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-15c2393541f4bd952f8845c5c4c008a192810111238b3d9c393702dc4e90b8473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Building codes</topic><topic>Civil Engineering</topic><topic>Comparative analysis</topic><topic>Destructive testing</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Failure modes</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Masonry</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Modelling</topic><topic>Numerical models</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Stiffness</topic><topic>Structural Geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zizi, Mattia</creatorcontrib><creatorcontrib>Chisari, Corrado</creatorcontrib><creatorcontrib>Rouhi, Jafar</creatorcontrib><creatorcontrib>De Matteis, Gianfranco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Bulletin of earthquake engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zizi, Mattia</au><au>Chisari, Corrado</au><au>Rouhi, Jafar</au><au>De Matteis, Gianfranco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis on macroscale material models for the prediction of masonry in-plane behavior</atitle><jtitle>Bulletin of earthquake engineering</jtitle><stitle>Bull Earthquake Eng</stitle><date>2022</date><risdate>2022</risdate><volume>20</volume><issue>2</issue><spage>963</spage><epage>996</epage><pages>963-996</pages><issn>1570-761X</issn><eissn>1573-1456</eissn><abstract>Simulating the mechanical behavior of masonry structures with reasonable approximation using numerical models is a complex issue, mainly due to the uncertainties affecting the selection of mechanical parameters. Since destructive testing is in some cases impossible, the Italian building code provides ranges for the parameters based on masonry type to be used in numerical and analytical estimations of the capacity curves of masonry panels, suggesting the Equivalent Frame Method approach for the numerical modelling. In this paper, the application of these ranges to three more sophisticated material descriptions to be used in 3D representations (i.e. Double Drucker Prager, Total strain crack and Concrete damage plasticity models) is investigated, with reference to a heterogeneous set of experimental tests performed in the past. In particular, numerical, analytical and experimental results are compared with the aim, on the one hand, of examining the suitability of such ranges when a macroscale approach is adopted, while, on the other, investigating their capability in predicting the real behavior of masonry structures. The comparisons are performed in terms of failure mode, initial stiffness, maximum horizontal load and ultimate drift. The results provide a critical appraisal of the predictive capability of the considered models. They also show that the application of material parameter ranges based on typological features to numerical models may be problematic and entails a limited improvement in the predictions compared to the analytical formulations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10518-021-01275-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-1476-5763</orcidid><orcidid>https://orcid.org/0000-0002-1638-8017</orcidid><orcidid>https://orcid.org/0000-0001-7413-6769</orcidid><orcidid>https://orcid.org/0000-0002-8518-3517</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-761X |
ispartof | Bulletin of earthquake engineering, 2022, Vol.20 (2), p.963-996 |
issn | 1570-761X 1573-1456 |
language | eng |
recordid | cdi_proquest_journals_2622379309 |
source | Springer Nature - Complete Springer Journals |
subjects | Approximation Building codes Civil Engineering Comparative analysis Destructive testing Earth and Environmental Science Earth Sciences Environmental Engineering/Biotechnology Failure modes Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Masonry Mathematical models Mechanical properties Modelling Numerical models Original Article Parameters Stiffness Structural Geology |
title | Comparative analysis on macroscale material models for the prediction of masonry in-plane behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20on%20macroscale%20material%20models%20for%20the%20prediction%20of%20masonry%20in-plane%20behavior&rft.jtitle=Bulletin%20of%20earthquake%20engineering&rft.au=Zizi,%20Mattia&rft.date=2022&rft.volume=20&rft.issue=2&rft.spage=963&rft.epage=996&rft.pages=963-996&rft.issn=1570-761X&rft.eissn=1573-1456&rft_id=info:doi/10.1007/s10518-021-01275-x&rft_dat=%3Cproquest_cross%3E2622379309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622379309&rft_id=info:pmid/&rfr_iscdi=true |