Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography
INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest radiography. METHODS: We use 136 segmented chest X-rays to train and evaluate the performance...
Gespeichert in:
Veröffentlicht in: | EAI endorsed transactions on bioengineering and bioinformatics 2021-03, Vol.1 (2), p.168864 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 168864 |
container_title | EAI endorsed transactions on bioengineering and bioinformatics |
container_volume | 1 |
creator | Moura, L. Dartora, C. Mattjie, C. Barros, R. Marques da Silva, A. |
description | INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest radiography. METHODS: We use 136 segmented chest X-rays to train and evaluate the performance of support vector machine (SVM), random forest (RF), AdaBoost (AB), and logistic regression (LR) classification methods. We use the PyRadiomics to extract statistical texture-based features in the right, left, and in six lung zones. We use a stratified k-folds (k=5) cross-validation within the training dataset, selecting the most relevant features with validation accuracy and relative feature importance. RESULTS: The AB model seems to be the best discriminant method, using six lung zones (AUC = 0.98). CONCLUSION: Our study shows a predominance of radiomic texture-based features related to COVID-19 pneumonia within the right lung, with a tendency within the upper lung zone. |
doi_str_mv | 10.4108/eai.4-3-2021.168864 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622303113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622303113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1674-4be819fd81ab2a92c2105cdee02890b48bbe9b555b54663991f1f012d36f81293</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWGqfwEvAc2omyW6To6ytFgoVqR4NyW7SprS7NelC-_buWg-eZgY-Zub_ELoHOhZA5aMzYSwIJ4wyGEMuZS6u0IBNqCICAK7_9bdolNKWUspUzhgXA_S1cqdjGx2xJrkKz5zpJzw9HaMpj6GpsW8iLpaf82cCCr_Vrt03dTC42JmUgg-l-aXaFOo1LjYuHfG7qUKzjuawOd-hG292yY3-6hB9zKar4pUsli_z4mlBSsgnggjrJChfSTCWGcVKBjQrK-cok4paIa11ymZZZjOR51wp8OApsIrnXgJTfIgeLnsPsfluuyf0tmlj3Z3UrE9KOQDvKH6hytikFJ3Xhxj2Jp41UN271J1LLTTXvUt9ccl_ADnLZrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622303113</pqid></control><display><type>article</type><title>Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Moura, L. ; Dartora, C. ; Mattjie, C. ; Barros, R. ; Marques da Silva, A.</creator><creatorcontrib>Moura, L. ; Dartora, C. ; Mattjie, C. ; Barros, R. ; Marques da Silva, A.</creatorcontrib><description>INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest radiography. METHODS: We use 136 segmented chest X-rays to train and evaluate the performance of support vector machine (SVM), random forest (RF), AdaBoost (AB), and logistic regression (LR) classification methods. We use the PyRadiomics to extract statistical texture-based features in the right, left, and in six lung zones. We use a stratified k-folds (k=5) cross-validation within the training dataset, selecting the most relevant features with validation accuracy and relative feature importance. RESULTS: The AB model seems to be the best discriminant method, using six lung zones (AUC = 0.98). CONCLUSION: Our study shows a predominance of radiomic texture-based features related to COVID-19 pneumonia within the right lung, with a tendency within the upper lung zone.</description><identifier>ISSN: 2709-4111</identifier><identifier>EISSN: 2709-4111</identifier><identifier>DOI: 10.4108/eai.4-3-2021.168864</identifier><language>eng</language><publisher>Dayton: European Alliance for Innovation (EAI)</publisher><subject>Chest ; Classification ; Coronaviruses ; COVID-19 ; Feature extraction ; Lungs ; Pneumonia ; Radiography ; Radiomics ; Statistical analysis ; Support vector machines ; Texture</subject><ispartof>EAI endorsed transactions on bioengineering and bioinformatics, 2021-03, Vol.1 (2), p.168864</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1674-4be819fd81ab2a92c2105cdee02890b48bbe9b555b54663991f1f012d36f81293</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moura, L.</creatorcontrib><creatorcontrib>Dartora, C.</creatorcontrib><creatorcontrib>Mattjie, C.</creatorcontrib><creatorcontrib>Barros, R.</creatorcontrib><creatorcontrib>Marques da Silva, A.</creatorcontrib><title>Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography</title><title>EAI endorsed transactions on bioengineering and bioinformatics</title><description>INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest radiography. METHODS: We use 136 segmented chest X-rays to train and evaluate the performance of support vector machine (SVM), random forest (RF), AdaBoost (AB), and logistic regression (LR) classification methods. We use the PyRadiomics to extract statistical texture-based features in the right, left, and in six lung zones. We use a stratified k-folds (k=5) cross-validation within the training dataset, selecting the most relevant features with validation accuracy and relative feature importance. RESULTS: The AB model seems to be the best discriminant method, using six lung zones (AUC = 0.98). CONCLUSION: Our study shows a predominance of radiomic texture-based features related to COVID-19 pneumonia within the right lung, with a tendency within the upper lung zone.</description><subject>Chest</subject><subject>Classification</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Feature extraction</subject><subject>Lungs</subject><subject>Pneumonia</subject><subject>Radiography</subject><subject>Radiomics</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Texture</subject><issn>2709-4111</issn><issn>2709-4111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkMFKAzEQhoMoWGqfwEvAc2omyW6To6ytFgoVqR4NyW7SprS7NelC-_buWg-eZgY-Zub_ELoHOhZA5aMzYSwIJ4wyGEMuZS6u0IBNqCICAK7_9bdolNKWUspUzhgXA_S1cqdjGx2xJrkKz5zpJzw9HaMpj6GpsW8iLpaf82cCCr_Vrt03dTC42JmUgg-l-aXaFOo1LjYuHfG7qUKzjuawOd-hG292yY3-6hB9zKar4pUsli_z4mlBSsgnggjrJChfSTCWGcVKBjQrK-cok4paIa11ymZZZjOR51wp8OApsIrnXgJTfIgeLnsPsfluuyf0tmlj3Z3UrE9KOQDvKH6hytikFJ3Xhxj2Jp41UN271J1LLTTXvUt9ccl_ADnLZrY</recordid><startdate>20210324</startdate><enddate>20210324</enddate><creator>Moura, L.</creator><creator>Dartora, C.</creator><creator>Mattjie, C.</creator><creator>Barros, R.</creator><creator>Marques da Silva, A.</creator><general>European Alliance for Innovation (EAI)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210324</creationdate><title>Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography</title><author>Moura, L. ; Dartora, C. ; Mattjie, C. ; Barros, R. ; Marques da Silva, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1674-4be819fd81ab2a92c2105cdee02890b48bbe9b555b54663991f1f012d36f81293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chest</topic><topic>Classification</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Feature extraction</topic><topic>Lungs</topic><topic>Pneumonia</topic><topic>Radiography</topic><topic>Radiomics</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Texture</topic><toplevel>online_resources</toplevel><creatorcontrib>Moura, L.</creatorcontrib><creatorcontrib>Dartora, C.</creatorcontrib><creatorcontrib>Mattjie, C.</creatorcontrib><creatorcontrib>Barros, R.</creatorcontrib><creatorcontrib>Marques da Silva, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>EAI endorsed transactions on bioengineering and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moura, L.</au><au>Dartora, C.</au><au>Mattjie, C.</au><au>Barros, R.</au><au>Marques da Silva, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography</atitle><jtitle>EAI endorsed transactions on bioengineering and bioinformatics</jtitle><date>2021-03-24</date><risdate>2021</risdate><volume>1</volume><issue>2</issue><spage>168864</spage><pages>168864-</pages><issn>2709-4111</issn><eissn>2709-4111</eissn><abstract>INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest radiography. METHODS: We use 136 segmented chest X-rays to train and evaluate the performance of support vector machine (SVM), random forest (RF), AdaBoost (AB), and logistic regression (LR) classification methods. We use the PyRadiomics to extract statistical texture-based features in the right, left, and in six lung zones. We use a stratified k-folds (k=5) cross-validation within the training dataset, selecting the most relevant features with validation accuracy and relative feature importance. RESULTS: The AB model seems to be the best discriminant method, using six lung zones (AUC = 0.98). CONCLUSION: Our study shows a predominance of radiomic texture-based features related to COVID-19 pneumonia within the right lung, with a tendency within the upper lung zone.</abstract><cop>Dayton</cop><pub>European Alliance for Innovation (EAI)</pub><doi>10.4108/eai.4-3-2021.168864</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2709-4111 |
ispartof | EAI endorsed transactions on bioengineering and bioinformatics, 2021-03, Vol.1 (2), p.168864 |
issn | 2709-4111 2709-4111 |
language | eng |
recordid | cdi_proquest_journals_2622303113 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Chest Classification Coronaviruses COVID-19 Feature extraction Lungs Pneumonia Radiography Radiomics Statistical analysis Support vector machines Texture |
title | Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture-based%20Feature%20Extraction%20for%20COVID-19%20Pneumonia%20Classification%20using%20Chest%20Radiography&rft.jtitle=EAI%20endorsed%20transactions%20on%20bioengineering%20and%20bioinformatics&rft.au=Moura,%20L.&rft.date=2021-03-24&rft.volume=1&rft.issue=2&rft.spage=168864&rft.pages=168864-&rft.issn=2709-4111&rft.eissn=2709-4111&rft_id=info:doi/10.4108/eai.4-3-2021.168864&rft_dat=%3Cproquest_cross%3E2622303113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622303113&rft_id=info:pmid/&rfr_iscdi=true |