Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography

INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest radiography. METHODS: We use 136 segmented chest X-rays to train and evaluate the performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EAI endorsed transactions on bioengineering and bioinformatics 2021-03, Vol.1 (2), p.168864
Hauptverfasser: Moura, L., Dartora, C., Mattjie, C., Barros, R., Marques da Silva, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 168864
container_title EAI endorsed transactions on bioengineering and bioinformatics
container_volume 1
creator Moura, L.
Dartora, C.
Mattjie, C.
Barros, R.
Marques da Silva, A.
description INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest radiography. METHODS: We use 136 segmented chest X-rays to train and evaluate the performance of support vector machine (SVM), random forest (RF), AdaBoost (AB), and logistic regression (LR) classification methods. We use the PyRadiomics to extract statistical texture-based features in the right, left, and in six lung zones. We use a stratified k-folds (k=5) cross-validation within the training dataset, selecting the most relevant features with validation accuracy and relative feature importance. RESULTS: The AB model seems to be the best discriminant method, using six lung zones (AUC = 0.98). CONCLUSION: Our study shows a predominance of radiomic texture-based features related to COVID-19 pneumonia within the right lung, with a tendency within the upper lung zone.
doi_str_mv 10.4108/eai.4-3-2021.168864
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622303113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622303113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1674-4be819fd81ab2a92c2105cdee02890b48bbe9b555b54663991f1f012d36f81293</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWGqfwEvAc2omyW6To6ytFgoVqR4NyW7SprS7NelC-_buWg-eZgY-Zub_ELoHOhZA5aMzYSwIJ4wyGEMuZS6u0IBNqCICAK7_9bdolNKWUspUzhgXA_S1cqdjGx2xJrkKz5zpJzw9HaMpj6GpsW8iLpaf82cCCr_Vrt03dTC42JmUgg-l-aXaFOo1LjYuHfG7qUKzjuawOd-hG292yY3-6hB9zKar4pUsli_z4mlBSsgnggjrJChfSTCWGcVKBjQrK-cok4paIa11ymZZZjOR51wp8OApsIrnXgJTfIgeLnsPsfluuyf0tmlj3Z3UrE9KOQDvKH6hytikFJ3Xhxj2Jp41UN271J1LLTTXvUt9ccl_ADnLZrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622303113</pqid></control><display><type>article</type><title>Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Moura, L. ; Dartora, C. ; Mattjie, C. ; Barros, R. ; Marques da Silva, A.</creator><creatorcontrib>Moura, L. ; Dartora, C. ; Mattjie, C. ; Barros, R. ; Marques da Silva, A.</creatorcontrib><description>INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest radiography. METHODS: We use 136 segmented chest X-rays to train and evaluate the performance of support vector machine (SVM), random forest (RF), AdaBoost (AB), and logistic regression (LR) classification methods. We use the PyRadiomics to extract statistical texture-based features in the right, left, and in six lung zones. We use a stratified k-folds (k=5) cross-validation within the training dataset, selecting the most relevant features with validation accuracy and relative feature importance. RESULTS: The AB model seems to be the best discriminant method, using six lung zones (AUC = 0.98). CONCLUSION: Our study shows a predominance of radiomic texture-based features related to COVID-19 pneumonia within the right lung, with a tendency within the upper lung zone.</description><identifier>ISSN: 2709-4111</identifier><identifier>EISSN: 2709-4111</identifier><identifier>DOI: 10.4108/eai.4-3-2021.168864</identifier><language>eng</language><publisher>Dayton: European Alliance for Innovation (EAI)</publisher><subject>Chest ; Classification ; Coronaviruses ; COVID-19 ; Feature extraction ; Lungs ; Pneumonia ; Radiography ; Radiomics ; Statistical analysis ; Support vector machines ; Texture</subject><ispartof>EAI endorsed transactions on bioengineering and bioinformatics, 2021-03, Vol.1 (2), p.168864</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1674-4be819fd81ab2a92c2105cdee02890b48bbe9b555b54663991f1f012d36f81293</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moura, L.</creatorcontrib><creatorcontrib>Dartora, C.</creatorcontrib><creatorcontrib>Mattjie, C.</creatorcontrib><creatorcontrib>Barros, R.</creatorcontrib><creatorcontrib>Marques da Silva, A.</creatorcontrib><title>Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography</title><title>EAI endorsed transactions on bioengineering and bioinformatics</title><description>INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest radiography. METHODS: We use 136 segmented chest X-rays to train and evaluate the performance of support vector machine (SVM), random forest (RF), AdaBoost (AB), and logistic regression (LR) classification methods. We use the PyRadiomics to extract statistical texture-based features in the right, left, and in six lung zones. We use a stratified k-folds (k=5) cross-validation within the training dataset, selecting the most relevant features with validation accuracy and relative feature importance. RESULTS: The AB model seems to be the best discriminant method, using six lung zones (AUC = 0.98). CONCLUSION: Our study shows a predominance of radiomic texture-based features related to COVID-19 pneumonia within the right lung, with a tendency within the upper lung zone.</description><subject>Chest</subject><subject>Classification</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Feature extraction</subject><subject>Lungs</subject><subject>Pneumonia</subject><subject>Radiography</subject><subject>Radiomics</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Texture</subject><issn>2709-4111</issn><issn>2709-4111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkMFKAzEQhoMoWGqfwEvAc2omyW6To6ytFgoVqR4NyW7SprS7NelC-_buWg-eZgY-Zub_ELoHOhZA5aMzYSwIJ4wyGEMuZS6u0IBNqCICAK7_9bdolNKWUspUzhgXA_S1cqdjGx2xJrkKz5zpJzw9HaMpj6GpsW8iLpaf82cCCr_Vrt03dTC42JmUgg-l-aXaFOo1LjYuHfG7qUKzjuawOd-hG292yY3-6hB9zKar4pUsli_z4mlBSsgnggjrJChfSTCWGcVKBjQrK-cok4paIa11ymZZZjOR51wp8OApsIrnXgJTfIgeLnsPsfluuyf0tmlj3Z3UrE9KOQDvKH6hytikFJ3Xhxj2Jp41UN271J1LLTTXvUt9ccl_ADnLZrY</recordid><startdate>20210324</startdate><enddate>20210324</enddate><creator>Moura, L.</creator><creator>Dartora, C.</creator><creator>Mattjie, C.</creator><creator>Barros, R.</creator><creator>Marques da Silva, A.</creator><general>European Alliance for Innovation (EAI)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210324</creationdate><title>Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography</title><author>Moura, L. ; Dartora, C. ; Mattjie, C. ; Barros, R. ; Marques da Silva, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1674-4be819fd81ab2a92c2105cdee02890b48bbe9b555b54663991f1f012d36f81293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chest</topic><topic>Classification</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Feature extraction</topic><topic>Lungs</topic><topic>Pneumonia</topic><topic>Radiography</topic><topic>Radiomics</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Texture</topic><toplevel>online_resources</toplevel><creatorcontrib>Moura, L.</creatorcontrib><creatorcontrib>Dartora, C.</creatorcontrib><creatorcontrib>Mattjie, C.</creatorcontrib><creatorcontrib>Barros, R.</creatorcontrib><creatorcontrib>Marques da Silva, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>EAI endorsed transactions on bioengineering and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moura, L.</au><au>Dartora, C.</au><au>Mattjie, C.</au><au>Barros, R.</au><au>Marques da Silva, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography</atitle><jtitle>EAI endorsed transactions on bioengineering and bioinformatics</jtitle><date>2021-03-24</date><risdate>2021</risdate><volume>1</volume><issue>2</issue><spage>168864</spage><pages>168864-</pages><issn>2709-4111</issn><eissn>2709-4111</eissn><abstract>INTRODUCTION: The identification of COVID-19 pneumonia using chest radiography is challenging. OBJECTIVES: We investigate classification models to differentiate COVID-19-based and typical pneumonia in chest radiography. METHODS: We use 136 segmented chest X-rays to train and evaluate the performance of support vector machine (SVM), random forest (RF), AdaBoost (AB), and logistic regression (LR) classification methods. We use the PyRadiomics to extract statistical texture-based features in the right, left, and in six lung zones. We use a stratified k-folds (k=5) cross-validation within the training dataset, selecting the most relevant features with validation accuracy and relative feature importance. RESULTS: The AB model seems to be the best discriminant method, using six lung zones (AUC = 0.98). CONCLUSION: Our study shows a predominance of radiomic texture-based features related to COVID-19 pneumonia within the right lung, with a tendency within the upper lung zone.</abstract><cop>Dayton</cop><pub>European Alliance for Innovation (EAI)</pub><doi>10.4108/eai.4-3-2021.168864</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2709-4111
ispartof EAI endorsed transactions on bioengineering and bioinformatics, 2021-03, Vol.1 (2), p.168864
issn 2709-4111
2709-4111
language eng
recordid cdi_proquest_journals_2622303113
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Chest
Classification
Coronaviruses
COVID-19
Feature extraction
Lungs
Pneumonia
Radiography
Radiomics
Statistical analysis
Support vector machines
Texture
title Texture-based Feature Extraction for COVID-19 Pneumonia Classification using Chest Radiography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture-based%20Feature%20Extraction%20for%20COVID-19%20Pneumonia%20Classification%20using%20Chest%20Radiography&rft.jtitle=EAI%20endorsed%20transactions%20on%20bioengineering%20and%20bioinformatics&rft.au=Moura,%20L.&rft.date=2021-03-24&rft.volume=1&rft.issue=2&rft.spage=168864&rft.pages=168864-&rft.issn=2709-4111&rft.eissn=2709-4111&rft_id=info:doi/10.4108/eai.4-3-2021.168864&rft_dat=%3Cproquest_cross%3E2622303113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622303113&rft_id=info:pmid/&rfr_iscdi=true