High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution

The critical prerequisite for realizing the industrial application of photocatalytic technology lies on developing efficient photocatalyst through reasonable and large-scale modification strategy. Herein, the rapid and solvent-free high-energy ball-milling procedure was adopted to modify graphitic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2022-04, Vol.303, p.120933, Article 120933
Hauptverfasser: Wang, Xuehua, Wang, Xianghu, Tian, Wenli, Meng, Alan, Li, Zhenjiang, Li, Shaoxiang, Wang, Lei, Li, Guicun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 120933
container_title Applied catalysis. B, Environmental
container_volume 303
creator Wang, Xuehua
Wang, Xianghu
Tian, Wenli
Meng, Alan
Li, Zhenjiang
Li, Shaoxiang
Wang, Lei
Li, Guicun
description The critical prerequisite for realizing the industrial application of photocatalytic technology lies on developing efficient photocatalyst through reasonable and large-scale modification strategy. Herein, the rapid and solvent-free high-energy ball-milling procedure was adopted to modify graphitic carbon nitride (g-C3N4) on a large-scale by phosphorus (P) atom doping and molybdenum phosphide (MoP) decorating. It is confirmed that P doping can introduce a mid-gap state in the band gap of g-C3N4, broadening the light responsive region and enhancing the electrical conductivity of g-C3N4. The Mo-N bond at the interface of P-doped g-C3N4 and MoP acting as electrons "delivery channels" facilitates the charge transfer from P-doped g-C3N4 to MoP, while the Schottky barrier promotes the separation of photocarriers. As a result, the optimized P-doped g-C3N4/MoP photocatalyst performs an improved H2 evolution rate of 4917.83 μmol·g−1·h−1 and a favorable H2 production stability. This work offers a replicable prototype on adopting high-energy ball-milling to modify photocatalyst.
doi_str_mv 10.1016/j.apcatb.2021.120933
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622300962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622300962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-aa4f304b440e059557742971818947cd851da72686660dd0e99a8d8081d9ed5d3</originalsourceid><addsrcrecordid>eNotkU2O1DAQhS0EEs3ADVhYYu2esp0fe4laQCPNDCMBa8uxncQhYwfHYdQX4pw4alalqvrqPZUeQu8pHCnQ5nY66sXo3B0ZMHqkDCTnL9CBipYTLgR_iQ4gWUM4b_lr9GZdJwBgnIkD-nv2w0hccGm44E7PM3ny8-zDgE0Ma06byXvzSGxcnMUDOfGH6vY-PuLRZZfitIVCxICffR7xfcQPuIvB4i55O5QDHwrVa-OwLtPvZow5_9qdUvIu4T4m7MKogynsUpax_KHnS_YGnxl2f-K87fJv0atez6t797_eoJ-fP_04ncndty9fTx_viGGtzETrqudQdVUFDmpZ121bMdlSQYWsWmNFTa1uWSOapgFrwUmphRUgqJXO1pbfoA9X3SXF35tbs5rilkKxVKxhjAPIhhWqulImxXVNrldL8k86XRQFtSeiJnVNRO2JqGsi_B_uOIJT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622300962</pqid></control><display><type>article</type><title>High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Xuehua ; Wang, Xianghu ; Tian, Wenli ; Meng, Alan ; Li, Zhenjiang ; Li, Shaoxiang ; Wang, Lei ; Li, Guicun</creator><creatorcontrib>Wang, Xuehua ; Wang, Xianghu ; Tian, Wenli ; Meng, Alan ; Li, Zhenjiang ; Li, Shaoxiang ; Wang, Lei ; Li, Guicun</creatorcontrib><description>The critical prerequisite for realizing the industrial application of photocatalytic technology lies on developing efficient photocatalyst through reasonable and large-scale modification strategy. Herein, the rapid and solvent-free high-energy ball-milling procedure was adopted to modify graphitic carbon nitride (g-C3N4) on a large-scale by phosphorus (P) atom doping and molybdenum phosphide (MoP) decorating. It is confirmed that P doping can introduce a mid-gap state in the band gap of g-C3N4, broadening the light responsive region and enhancing the electrical conductivity of g-C3N4. The Mo-N bond at the interface of P-doped g-C3N4 and MoP acting as electrons "delivery channels" facilitates the charge transfer from P-doped g-C3N4 to MoP, while the Schottky barrier promotes the separation of photocarriers. As a result, the optimized P-doped g-C3N4/MoP photocatalyst performs an improved H2 evolution rate of 4917.83 μmol·g−1·h−1 and a favorable H2 production stability. This work offers a replicable prototype on adopting high-energy ball-milling to modify photocatalyst.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2021.120933</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Ball milling ; Carbon nitride ; Charge transfer ; Doping ; Electrical conductivity ; Electrical resistivity ; Heterojunctions ; Hydrogen evolution ; Hydrogen production ; Industrial applications ; Molybdenum ; Phosphides ; Phosphorus ; Photocatalysis ; Photocatalysts</subject><ispartof>Applied catalysis. B, Environmental, 2022-04, Vol.303, p.120933, Article 120933</ispartof><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-aa4f304b440e059557742971818947cd851da72686660dd0e99a8d8081d9ed5d3</citedby><cites>FETCH-LOGICAL-c279t-aa4f304b440e059557742971818947cd851da72686660dd0e99a8d8081d9ed5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Xuehua</creatorcontrib><creatorcontrib>Wang, Xianghu</creatorcontrib><creatorcontrib>Tian, Wenli</creatorcontrib><creatorcontrib>Meng, Alan</creatorcontrib><creatorcontrib>Li, Zhenjiang</creatorcontrib><creatorcontrib>Li, Shaoxiang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Li, Guicun</creatorcontrib><title>High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution</title><title>Applied catalysis. B, Environmental</title><description>The critical prerequisite for realizing the industrial application of photocatalytic technology lies on developing efficient photocatalyst through reasonable and large-scale modification strategy. Herein, the rapid and solvent-free high-energy ball-milling procedure was adopted to modify graphitic carbon nitride (g-C3N4) on a large-scale by phosphorus (P) atom doping and molybdenum phosphide (MoP) decorating. It is confirmed that P doping can introduce a mid-gap state in the band gap of g-C3N4, broadening the light responsive region and enhancing the electrical conductivity of g-C3N4. The Mo-N bond at the interface of P-doped g-C3N4 and MoP acting as electrons "delivery channels" facilitates the charge transfer from P-doped g-C3N4 to MoP, while the Schottky barrier promotes the separation of photocarriers. As a result, the optimized P-doped g-C3N4/MoP photocatalyst performs an improved H2 evolution rate of 4917.83 μmol·g−1·h−1 and a favorable H2 production stability. This work offers a replicable prototype on adopting high-energy ball-milling to modify photocatalyst.</description><subject>Ball milling</subject><subject>Carbon nitride</subject><subject>Charge transfer</subject><subject>Doping</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Industrial applications</subject><subject>Molybdenum</subject><subject>Phosphides</subject><subject>Phosphorus</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkU2O1DAQhS0EEs3ADVhYYu2esp0fe4laQCPNDCMBa8uxncQhYwfHYdQX4pw4alalqvrqPZUeQu8pHCnQ5nY66sXo3B0ZMHqkDCTnL9CBipYTLgR_iQ4gWUM4b_lr9GZdJwBgnIkD-nv2w0hccGm44E7PM3ny8-zDgE0Ma06byXvzSGxcnMUDOfGH6vY-PuLRZZfitIVCxICffR7xfcQPuIvB4i55O5QDHwrVa-OwLtPvZow5_9qdUvIu4T4m7MKogynsUpax_KHnS_YGnxl2f-K87fJv0atez6t797_eoJ-fP_04ncndty9fTx_viGGtzETrqudQdVUFDmpZ121bMdlSQYWsWmNFTa1uWSOapgFrwUmphRUgqJXO1pbfoA9X3SXF35tbs5rilkKxVKxhjAPIhhWqulImxXVNrldL8k86XRQFtSeiJnVNRO2JqGsi_B_uOIJT</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Wang, Xuehua</creator><creator>Wang, Xianghu</creator><creator>Tian, Wenli</creator><creator>Meng, Alan</creator><creator>Li, Zhenjiang</creator><creator>Li, Shaoxiang</creator><creator>Wang, Lei</creator><creator>Li, Guicun</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202204</creationdate><title>High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution</title><author>Wang, Xuehua ; Wang, Xianghu ; Tian, Wenli ; Meng, Alan ; Li, Zhenjiang ; Li, Shaoxiang ; Wang, Lei ; Li, Guicun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-aa4f304b440e059557742971818947cd851da72686660dd0e99a8d8081d9ed5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ball milling</topic><topic>Carbon nitride</topic><topic>Charge transfer</topic><topic>Doping</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Industrial applications</topic><topic>Molybdenum</topic><topic>Phosphides</topic><topic>Phosphorus</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuehua</creatorcontrib><creatorcontrib>Wang, Xianghu</creatorcontrib><creatorcontrib>Tian, Wenli</creatorcontrib><creatorcontrib>Meng, Alan</creatorcontrib><creatorcontrib>Li, Zhenjiang</creatorcontrib><creatorcontrib>Li, Shaoxiang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Li, Guicun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuehua</au><au>Wang, Xianghu</au><au>Tian, Wenli</au><au>Meng, Alan</au><au>Li, Zhenjiang</au><au>Li, Shaoxiang</au><au>Wang, Lei</au><au>Li, Guicun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2022-04</date><risdate>2022</risdate><volume>303</volume><spage>120933</spage><pages>120933-</pages><artnum>120933</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>The critical prerequisite for realizing the industrial application of photocatalytic technology lies on developing efficient photocatalyst through reasonable and large-scale modification strategy. Herein, the rapid and solvent-free high-energy ball-milling procedure was adopted to modify graphitic carbon nitride (g-C3N4) on a large-scale by phosphorus (P) atom doping and molybdenum phosphide (MoP) decorating. It is confirmed that P doping can introduce a mid-gap state in the band gap of g-C3N4, broadening the light responsive region and enhancing the electrical conductivity of g-C3N4. The Mo-N bond at the interface of P-doped g-C3N4 and MoP acting as electrons "delivery channels" facilitates the charge transfer from P-doped g-C3N4 to MoP, while the Schottky barrier promotes the separation of photocarriers. As a result, the optimized P-doped g-C3N4/MoP photocatalyst performs an improved H2 evolution rate of 4917.83 μmol·g−1·h−1 and a favorable H2 production stability. This work offers a replicable prototype on adopting high-energy ball-milling to modify photocatalyst.</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.apcatb.2021.120933</doi></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2022-04, Vol.303, p.120933, Article 120933
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2622300962
source Elsevier ScienceDirect Journals Complete
subjects Ball milling
Carbon nitride
Charge transfer
Doping
Electrical conductivity
Electrical resistivity
Heterojunctions
Hydrogen evolution
Hydrogen production
Industrial applications
Molybdenum
Phosphides
Phosphorus
Photocatalysis
Photocatalysts
title High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-energy%20ball-milling%20constructing%20P-doped%20g-C3N4/MoP%20heterojunction%20with%20Mo%20N%20bond%20bridged%20interface%20and%20Schottky%20barrier%20for%20enhanced%20photocatalytic%20H2%20evolution&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Wang,%20Xuehua&rft.date=2022-04&rft.volume=303&rft.spage=120933&rft.pages=120933-&rft.artnum=120933&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2021.120933&rft_dat=%3Cproquest_cross%3E2622300962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622300962&rft_id=info:pmid/&rfr_iscdi=true