High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution
The critical prerequisite for realizing the industrial application of photocatalytic technology lies on developing efficient photocatalyst through reasonable and large-scale modification strategy. Herein, the rapid and solvent-free high-energy ball-milling procedure was adopted to modify graphitic c...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2022-04, Vol.303, p.120933, Article 120933 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 120933 |
container_title | Applied catalysis. B, Environmental |
container_volume | 303 |
creator | Wang, Xuehua Wang, Xianghu Tian, Wenli Meng, Alan Li, Zhenjiang Li, Shaoxiang Wang, Lei Li, Guicun |
description | The critical prerequisite for realizing the industrial application of photocatalytic technology lies on developing efficient photocatalyst through reasonable and large-scale modification strategy. Herein, the rapid and solvent-free high-energy ball-milling procedure was adopted to modify graphitic carbon nitride (g-C3N4) on a large-scale by phosphorus (P) atom doping and molybdenum phosphide (MoP) decorating. It is confirmed that P doping can introduce a mid-gap state in the band gap of g-C3N4, broadening the light responsive region and enhancing the electrical conductivity of g-C3N4. The Mo-N bond at the interface of P-doped g-C3N4 and MoP acting as electrons "delivery channels" facilitates the charge transfer from P-doped g-C3N4 to MoP, while the Schottky barrier promotes the separation of photocarriers. As a result, the optimized P-doped g-C3N4/MoP photocatalyst performs an improved H2 evolution rate of 4917.83 μmol·g−1·h−1 and a favorable H2 production stability. This work offers a replicable prototype on adopting high-energy ball-milling to modify photocatalyst. |
doi_str_mv | 10.1016/j.apcatb.2021.120933 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622300962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622300962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-aa4f304b440e059557742971818947cd851da72686660dd0e99a8d8081d9ed5d3</originalsourceid><addsrcrecordid>eNotkU2O1DAQhS0EEs3ADVhYYu2esp0fe4laQCPNDCMBa8uxncQhYwfHYdQX4pw4alalqvrqPZUeQu8pHCnQ5nY66sXo3B0ZMHqkDCTnL9CBipYTLgR_iQ4gWUM4b_lr9GZdJwBgnIkD-nv2w0hccGm44E7PM3ny8-zDgE0Ma06byXvzSGxcnMUDOfGH6vY-PuLRZZfitIVCxICffR7xfcQPuIvB4i55O5QDHwrVa-OwLtPvZow5_9qdUvIu4T4m7MKogynsUpax_KHnS_YGnxl2f-K87fJv0atez6t797_eoJ-fP_04ncndty9fTx_viGGtzETrqudQdVUFDmpZ121bMdlSQYWsWmNFTa1uWSOapgFrwUmphRUgqJXO1pbfoA9X3SXF35tbs5rilkKxVKxhjAPIhhWqulImxXVNrldL8k86XRQFtSeiJnVNRO2JqGsi_B_uOIJT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622300962</pqid></control><display><type>article</type><title>High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Xuehua ; Wang, Xianghu ; Tian, Wenli ; Meng, Alan ; Li, Zhenjiang ; Li, Shaoxiang ; Wang, Lei ; Li, Guicun</creator><creatorcontrib>Wang, Xuehua ; Wang, Xianghu ; Tian, Wenli ; Meng, Alan ; Li, Zhenjiang ; Li, Shaoxiang ; Wang, Lei ; Li, Guicun</creatorcontrib><description>The critical prerequisite for realizing the industrial application of photocatalytic technology lies on developing efficient photocatalyst through reasonable and large-scale modification strategy. Herein, the rapid and solvent-free high-energy ball-milling procedure was adopted to modify graphitic carbon nitride (g-C3N4) on a large-scale by phosphorus (P) atom doping and molybdenum phosphide (MoP) decorating. It is confirmed that P doping can introduce a mid-gap state in the band gap of g-C3N4, broadening the light responsive region and enhancing the electrical conductivity of g-C3N4. The Mo-N bond at the interface of P-doped g-C3N4 and MoP acting as electrons "delivery channels" facilitates the charge transfer from P-doped g-C3N4 to MoP, while the Schottky barrier promotes the separation of photocarriers. As a result, the optimized P-doped g-C3N4/MoP photocatalyst performs an improved H2 evolution rate of 4917.83 μmol·g−1·h−1 and a favorable H2 production stability. This work offers a replicable prototype on adopting high-energy ball-milling to modify photocatalyst.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2021.120933</identifier><language>eng</language><publisher>Amsterdam: Elsevier BV</publisher><subject>Ball milling ; Carbon nitride ; Charge transfer ; Doping ; Electrical conductivity ; Electrical resistivity ; Heterojunctions ; Hydrogen evolution ; Hydrogen production ; Industrial applications ; Molybdenum ; Phosphides ; Phosphorus ; Photocatalysis ; Photocatalysts</subject><ispartof>Applied catalysis. B, Environmental, 2022-04, Vol.303, p.120933, Article 120933</ispartof><rights>Copyright Elsevier BV Apr 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-aa4f304b440e059557742971818947cd851da72686660dd0e99a8d8081d9ed5d3</citedby><cites>FETCH-LOGICAL-c279t-aa4f304b440e059557742971818947cd851da72686660dd0e99a8d8081d9ed5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Xuehua</creatorcontrib><creatorcontrib>Wang, Xianghu</creatorcontrib><creatorcontrib>Tian, Wenli</creatorcontrib><creatorcontrib>Meng, Alan</creatorcontrib><creatorcontrib>Li, Zhenjiang</creatorcontrib><creatorcontrib>Li, Shaoxiang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Li, Guicun</creatorcontrib><title>High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution</title><title>Applied catalysis. B, Environmental</title><description>The critical prerequisite for realizing the industrial application of photocatalytic technology lies on developing efficient photocatalyst through reasonable and large-scale modification strategy. Herein, the rapid and solvent-free high-energy ball-milling procedure was adopted to modify graphitic carbon nitride (g-C3N4) on a large-scale by phosphorus (P) atom doping and molybdenum phosphide (MoP) decorating. It is confirmed that P doping can introduce a mid-gap state in the band gap of g-C3N4, broadening the light responsive region and enhancing the electrical conductivity of g-C3N4. The Mo-N bond at the interface of P-doped g-C3N4 and MoP acting as electrons "delivery channels" facilitates the charge transfer from P-doped g-C3N4 to MoP, while the Schottky barrier promotes the separation of photocarriers. As a result, the optimized P-doped g-C3N4/MoP photocatalyst performs an improved H2 evolution rate of 4917.83 μmol·g−1·h−1 and a favorable H2 production stability. This work offers a replicable prototype on adopting high-energy ball-milling to modify photocatalyst.</description><subject>Ball milling</subject><subject>Carbon nitride</subject><subject>Charge transfer</subject><subject>Doping</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Industrial applications</subject><subject>Molybdenum</subject><subject>Phosphides</subject><subject>Phosphorus</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkU2O1DAQhS0EEs3ADVhYYu2esp0fe4laQCPNDCMBa8uxncQhYwfHYdQX4pw4alalqvrqPZUeQu8pHCnQ5nY66sXo3B0ZMHqkDCTnL9CBipYTLgR_iQ4gWUM4b_lr9GZdJwBgnIkD-nv2w0hccGm44E7PM3ny8-zDgE0Ma06byXvzSGxcnMUDOfGH6vY-PuLRZZfitIVCxICffR7xfcQPuIvB4i55O5QDHwrVa-OwLtPvZow5_9qdUvIu4T4m7MKogynsUpax_KHnS_YGnxl2f-K87fJv0atez6t797_eoJ-fP_04ncndty9fTx_viGGtzETrqudQdVUFDmpZ121bMdlSQYWsWmNFTa1uWSOapgFrwUmphRUgqJXO1pbfoA9X3SXF35tbs5rilkKxVKxhjAPIhhWqulImxXVNrldL8k86XRQFtSeiJnVNRO2JqGsi_B_uOIJT</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Wang, Xuehua</creator><creator>Wang, Xianghu</creator><creator>Tian, Wenli</creator><creator>Meng, Alan</creator><creator>Li, Zhenjiang</creator><creator>Li, Shaoxiang</creator><creator>Wang, Lei</creator><creator>Li, Guicun</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202204</creationdate><title>High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution</title><author>Wang, Xuehua ; Wang, Xianghu ; Tian, Wenli ; Meng, Alan ; Li, Zhenjiang ; Li, Shaoxiang ; Wang, Lei ; Li, Guicun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-aa4f304b440e059557742971818947cd851da72686660dd0e99a8d8081d9ed5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ball milling</topic><topic>Carbon nitride</topic><topic>Charge transfer</topic><topic>Doping</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Industrial applications</topic><topic>Molybdenum</topic><topic>Phosphides</topic><topic>Phosphorus</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuehua</creatorcontrib><creatorcontrib>Wang, Xianghu</creatorcontrib><creatorcontrib>Tian, Wenli</creatorcontrib><creatorcontrib>Meng, Alan</creatorcontrib><creatorcontrib>Li, Zhenjiang</creatorcontrib><creatorcontrib>Li, Shaoxiang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Li, Guicun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuehua</au><au>Wang, Xianghu</au><au>Tian, Wenli</au><au>Meng, Alan</au><au>Li, Zhenjiang</au><au>Li, Shaoxiang</au><au>Wang, Lei</au><au>Li, Guicun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2022-04</date><risdate>2022</risdate><volume>303</volume><spage>120933</spage><pages>120933-</pages><artnum>120933</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>The critical prerequisite for realizing the industrial application of photocatalytic technology lies on developing efficient photocatalyst through reasonable and large-scale modification strategy. Herein, the rapid and solvent-free high-energy ball-milling procedure was adopted to modify graphitic carbon nitride (g-C3N4) on a large-scale by phosphorus (P) atom doping and molybdenum phosphide (MoP) decorating. It is confirmed that P doping can introduce a mid-gap state in the band gap of g-C3N4, broadening the light responsive region and enhancing the electrical conductivity of g-C3N4. The Mo-N bond at the interface of P-doped g-C3N4 and MoP acting as electrons "delivery channels" facilitates the charge transfer from P-doped g-C3N4 to MoP, while the Schottky barrier promotes the separation of photocarriers. As a result, the optimized P-doped g-C3N4/MoP photocatalyst performs an improved H2 evolution rate of 4917.83 μmol·g−1·h−1 and a favorable H2 production stability. This work offers a replicable prototype on adopting high-energy ball-milling to modify photocatalyst.</abstract><cop>Amsterdam</cop><pub>Elsevier BV</pub><doi>10.1016/j.apcatb.2021.120933</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2022-04, Vol.303, p.120933, Article 120933 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2622300962 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Ball milling Carbon nitride Charge transfer Doping Electrical conductivity Electrical resistivity Heterojunctions Hydrogen evolution Hydrogen production Industrial applications Molybdenum Phosphides Phosphorus Photocatalysis Photocatalysts |
title | High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-energy%20ball-milling%20constructing%20P-doped%20g-C3N4/MoP%20heterojunction%20with%20Mo%20N%20bond%20bridged%20interface%20and%20Schottky%20barrier%20for%20enhanced%20photocatalytic%20H2%20evolution&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Wang,%20Xuehua&rft.date=2022-04&rft.volume=303&rft.spage=120933&rft.pages=120933-&rft.artnum=120933&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2021.120933&rft_dat=%3Cproquest_cross%3E2622300962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622300962&rft_id=info:pmid/&rfr_iscdi=true |