Carbon fiber reinforced elastomeric thermal interface materials for spacecraft
Due to the high-heat flux issue caused by the increasing power consumption of electronic devices in spacecraft, there is an urgent need but still a significant challenge to develop high thermal conductivity elastomeric thermal interface materials (TIMs) for spacecraft. In this study, mesophase pitch...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2022-02, Vol.187, p.432-438 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 438 |
---|---|
container_issue | |
container_start_page | 432 |
container_title | Carbon (New York) |
container_volume | 187 |
creator | Wu, Qi Li, Wenjun Liu, Chang Xu, Yawei Li, Guoguang Zhang, Hongxing Huang, Jinyin Miao, Jianyin |
description | Due to the high-heat flux issue caused by the increasing power consumption of electronic devices in spacecraft, there is an urgent need but still a significant challenge to develop high thermal conductivity elastomeric thermal interface materials (TIMs) for spacecraft. In this study, mesophase pitch-based carbon fibers (CFs) are added as fillers on the basis of conventional alumina/silicone rubber TIMs, and the CFs are oriented in the matrix by a strong magnetic field during the preparation process. Attributed to the phonon-transport highways composed of vertically-oriented CFs and the synergistic improvement based on CFs and alumina, the through-plane thermal conductivity of the final elastomeric composite with 20 vol% CFs is increased by nearly 14 times compared with the alumina/silicone rubber composite, and it also confirms to the vacuum outgassing performance standard for spacecraft. Moreover, with the help of a verification system, the actual heat transfer capability of the composite is evaluated through the ground test and on-orbit test, and the results suggest that it has a perfect interface heat transfer capability both on the ground and in space, which reveals that this composite can potentially be applied as elastomeric TIM for spacecraft thermal control.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2021.11.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622300902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321011179</els_id><sourcerecordid>2622300902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d25159d1c3a2c44339da856fe2e8e80e766d9fd990a731e53b9ab18fdff62e0c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Bz62ZpO02F0EW_8GiFz2HNJlgym67TqrgtzdrPXuamcd7M8yPsUsQJQhorvvSWerGoZRCQglQCqWP2ALalSpUq-GYLYQQbdFIqU7ZWUp9HqsWqgV7Xv8meYgdEieMQxjJoee4tWkad0jR8ekdaWe3PA4TUrAO-c7mLtpt4tnO0z5rjmyYztlJyCpe_NUle7u_e10_FpuXh6f17aZwSlVT4WUNtfbglJWuqpTS3rZ1E1Bii63AVdN4HbzWwq4UYK06bTtogw-hkSicWrKree-exo9PTJPpx08a8kkjD18KoYXMrmp2ORpTIgxmT3Fn6duAMAdypjczOXMgZwBMJpdjN3MM8wdfEckkF3HIVCKhm4wf4_8LfgDMAHm9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622300902</pqid></control><display><type>article</type><title>Carbon fiber reinforced elastomeric thermal interface materials for spacecraft</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wu, Qi ; Li, Wenjun ; Liu, Chang ; Xu, Yawei ; Li, Guoguang ; Zhang, Hongxing ; Huang, Jinyin ; Miao, Jianyin</creator><creatorcontrib>Wu, Qi ; Li, Wenjun ; Liu, Chang ; Xu, Yawei ; Li, Guoguang ; Zhang, Hongxing ; Huang, Jinyin ; Miao, Jianyin</creatorcontrib><description>Due to the high-heat flux issue caused by the increasing power consumption of electronic devices in spacecraft, there is an urgent need but still a significant challenge to develop high thermal conductivity elastomeric thermal interface materials (TIMs) for spacecraft. In this study, mesophase pitch-based carbon fibers (CFs) are added as fillers on the basis of conventional alumina/silicone rubber TIMs, and the CFs are oriented in the matrix by a strong magnetic field during the preparation process. Attributed to the phonon-transport highways composed of vertically-oriented CFs and the synergistic improvement based on CFs and alumina, the through-plane thermal conductivity of the final elastomeric composite with 20 vol% CFs is increased by nearly 14 times compared with the alumina/silicone rubber composite, and it also confirms to the vacuum outgassing performance standard for spacecraft. Moreover, with the help of a verification system, the actual heat transfer capability of the composite is evaluated through the ground test and on-orbit test, and the results suggest that it has a perfect interface heat transfer capability both on the ground and in space, which reveals that this composite can potentially be applied as elastomeric TIM for spacecraft thermal control.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.11.039</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aluminum oxide ; Carbon fiber ; Carbon fibers ; Composite materials ; Elastomers ; Electronic devices ; Ground tests ; Heat conductivity ; Heat flux ; Heat transfer ; Magnetic orientation ; Outgassing ; Performance standards ; Power consumption ; Silicone resins ; Silicone rubber ; Spacecraft ; Spacecraft construction materials ; Thermal conductivity ; Thermal interface material</subject><ispartof>Carbon (New York), 2022-02, Vol.187, p.432-438</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d25159d1c3a2c44339da856fe2e8e80e766d9fd990a731e53b9ab18fdff62e0c3</citedby><cites>FETCH-LOGICAL-c334t-d25159d1c3a2c44339da856fe2e8e80e766d9fd990a731e53b9ab18fdff62e0c3</cites><orcidid>0000-0003-1226-9675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.11.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Li, Wenjun</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Xu, Yawei</creatorcontrib><creatorcontrib>Li, Guoguang</creatorcontrib><creatorcontrib>Zhang, Hongxing</creatorcontrib><creatorcontrib>Huang, Jinyin</creatorcontrib><creatorcontrib>Miao, Jianyin</creatorcontrib><title>Carbon fiber reinforced elastomeric thermal interface materials for spacecraft</title><title>Carbon (New York)</title><description>Due to the high-heat flux issue caused by the increasing power consumption of electronic devices in spacecraft, there is an urgent need but still a significant challenge to develop high thermal conductivity elastomeric thermal interface materials (TIMs) for spacecraft. In this study, mesophase pitch-based carbon fibers (CFs) are added as fillers on the basis of conventional alumina/silicone rubber TIMs, and the CFs are oriented in the matrix by a strong magnetic field during the preparation process. Attributed to the phonon-transport highways composed of vertically-oriented CFs and the synergistic improvement based on CFs and alumina, the through-plane thermal conductivity of the final elastomeric composite with 20 vol% CFs is increased by nearly 14 times compared with the alumina/silicone rubber composite, and it also confirms to the vacuum outgassing performance standard for spacecraft. Moreover, with the help of a verification system, the actual heat transfer capability of the composite is evaluated through the ground test and on-orbit test, and the results suggest that it has a perfect interface heat transfer capability both on the ground and in space, which reveals that this composite can potentially be applied as elastomeric TIM for spacecraft thermal control.
[Display omitted]</description><subject>Aluminum oxide</subject><subject>Carbon fiber</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Elastomers</subject><subject>Electronic devices</subject><subject>Ground tests</subject><subject>Heat conductivity</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Magnetic orientation</subject><subject>Outgassing</subject><subject>Performance standards</subject><subject>Power consumption</subject><subject>Silicone resins</subject><subject>Silicone rubber</subject><subject>Spacecraft</subject><subject>Spacecraft construction materials</subject><subject>Thermal conductivity</subject><subject>Thermal interface material</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Bz62ZpO02F0EW_8GiFz2HNJlgym67TqrgtzdrPXuamcd7M8yPsUsQJQhorvvSWerGoZRCQglQCqWP2ALalSpUq-GYLYQQbdFIqU7ZWUp9HqsWqgV7Xv8meYgdEieMQxjJoee4tWkad0jR8ekdaWe3PA4TUrAO-c7mLtpt4tnO0z5rjmyYztlJyCpe_NUle7u_e10_FpuXh6f17aZwSlVT4WUNtfbglJWuqpTS3rZ1E1Bii63AVdN4HbzWwq4UYK06bTtogw-hkSicWrKree-exo9PTJPpx08a8kkjD18KoYXMrmp2ORpTIgxmT3Fn6duAMAdypjczOXMgZwBMJpdjN3MM8wdfEckkF3HIVCKhm4wf4_8LfgDMAHm9</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Wu, Qi</creator><creator>Li, Wenjun</creator><creator>Liu, Chang</creator><creator>Xu, Yawei</creator><creator>Li, Guoguang</creator><creator>Zhang, Hongxing</creator><creator>Huang, Jinyin</creator><creator>Miao, Jianyin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1226-9675</orcidid></search><sort><creationdate>202202</creationdate><title>Carbon fiber reinforced elastomeric thermal interface materials for spacecraft</title><author>Wu, Qi ; Li, Wenjun ; Liu, Chang ; Xu, Yawei ; Li, Guoguang ; Zhang, Hongxing ; Huang, Jinyin ; Miao, Jianyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d25159d1c3a2c44339da856fe2e8e80e766d9fd990a731e53b9ab18fdff62e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Carbon fiber</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Elastomers</topic><topic>Electronic devices</topic><topic>Ground tests</topic><topic>Heat conductivity</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Magnetic orientation</topic><topic>Outgassing</topic><topic>Performance standards</topic><topic>Power consumption</topic><topic>Silicone resins</topic><topic>Silicone rubber</topic><topic>Spacecraft</topic><topic>Spacecraft construction materials</topic><topic>Thermal conductivity</topic><topic>Thermal interface material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Li, Wenjun</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Xu, Yawei</creatorcontrib><creatorcontrib>Li, Guoguang</creatorcontrib><creatorcontrib>Zhang, Hongxing</creatorcontrib><creatorcontrib>Huang, Jinyin</creatorcontrib><creatorcontrib>Miao, Jianyin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qi</au><au>Li, Wenjun</au><au>Liu, Chang</au><au>Xu, Yawei</au><au>Li, Guoguang</au><au>Zhang, Hongxing</au><au>Huang, Jinyin</au><au>Miao, Jianyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon fiber reinforced elastomeric thermal interface materials for spacecraft</atitle><jtitle>Carbon (New York)</jtitle><date>2022-02</date><risdate>2022</risdate><volume>187</volume><spage>432</spage><epage>438</epage><pages>432-438</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Due to the high-heat flux issue caused by the increasing power consumption of electronic devices in spacecraft, there is an urgent need but still a significant challenge to develop high thermal conductivity elastomeric thermal interface materials (TIMs) for spacecraft. In this study, mesophase pitch-based carbon fibers (CFs) are added as fillers on the basis of conventional alumina/silicone rubber TIMs, and the CFs are oriented in the matrix by a strong magnetic field during the preparation process. Attributed to the phonon-transport highways composed of vertically-oriented CFs and the synergistic improvement based on CFs and alumina, the through-plane thermal conductivity of the final elastomeric composite with 20 vol% CFs is increased by nearly 14 times compared with the alumina/silicone rubber composite, and it also confirms to the vacuum outgassing performance standard for spacecraft. Moreover, with the help of a verification system, the actual heat transfer capability of the composite is evaluated through the ground test and on-orbit test, and the results suggest that it has a perfect interface heat transfer capability both on the ground and in space, which reveals that this composite can potentially be applied as elastomeric TIM for spacecraft thermal control.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.11.039</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1226-9675</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2022-02, Vol.187, p.432-438 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2622300902 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aluminum oxide Carbon fiber Carbon fibers Composite materials Elastomers Electronic devices Ground tests Heat conductivity Heat flux Heat transfer Magnetic orientation Outgassing Performance standards Power consumption Silicone resins Silicone rubber Spacecraft Spacecraft construction materials Thermal conductivity Thermal interface material |
title | Carbon fiber reinforced elastomeric thermal interface materials for spacecraft |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T19%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20fiber%20reinforced%20elastomeric%20thermal%20interface%20materials%20for%20spacecraft&rft.jtitle=Carbon%20(New%20York)&rft.au=Wu,%20Qi&rft.date=2022-02&rft.volume=187&rft.spage=432&rft.epage=438&rft.pages=432-438&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.11.039&rft_dat=%3Cproquest_cross%3E2622300902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622300902&rft_id=info:pmid/&rft_els_id=S0008622321011179&rfr_iscdi=true |