Carbon fiber reinforced elastomeric thermal interface materials for spacecraft

Due to the high-heat flux issue caused by the increasing power consumption of electronic devices in spacecraft, there is an urgent need but still a significant challenge to develop high thermal conductivity elastomeric thermal interface materials (TIMs) for spacecraft. In this study, mesophase pitch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2022-02, Vol.187, p.432-438
Hauptverfasser: Wu, Qi, Li, Wenjun, Liu, Chang, Xu, Yawei, Li, Guoguang, Zhang, Hongxing, Huang, Jinyin, Miao, Jianyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue
container_start_page 432
container_title Carbon (New York)
container_volume 187
creator Wu, Qi
Li, Wenjun
Liu, Chang
Xu, Yawei
Li, Guoguang
Zhang, Hongxing
Huang, Jinyin
Miao, Jianyin
description Due to the high-heat flux issue caused by the increasing power consumption of electronic devices in spacecraft, there is an urgent need but still a significant challenge to develop high thermal conductivity elastomeric thermal interface materials (TIMs) for spacecraft. In this study, mesophase pitch-based carbon fibers (CFs) are added as fillers on the basis of conventional alumina/silicone rubber TIMs, and the CFs are oriented in the matrix by a strong magnetic field during the preparation process. Attributed to the phonon-transport highways composed of vertically-oriented CFs and the synergistic improvement based on CFs and alumina, the through-plane thermal conductivity of the final elastomeric composite with 20 vol% CFs is increased by nearly 14 times compared with the alumina/silicone rubber composite, and it also confirms to the vacuum outgassing performance standard for spacecraft. Moreover, with the help of a verification system, the actual heat transfer capability of the composite is evaluated through the ground test and on-orbit test, and the results suggest that it has a perfect interface heat transfer capability both on the ground and in space, which reveals that this composite can potentially be applied as elastomeric TIM for spacecraft thermal control. [Display omitted]
doi_str_mv 10.1016/j.carbon.2021.11.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622300902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321011179</els_id><sourcerecordid>2622300902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d25159d1c3a2c44339da856fe2e8e80e766d9fd990a731e53b9ab18fdff62e0c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Bz62ZpO02F0EW_8GiFz2HNJlgym67TqrgtzdrPXuamcd7M8yPsUsQJQhorvvSWerGoZRCQglQCqWP2ALalSpUq-GYLYQQbdFIqU7ZWUp9HqsWqgV7Xv8meYgdEieMQxjJoee4tWkad0jR8ekdaWe3PA4TUrAO-c7mLtpt4tnO0z5rjmyYztlJyCpe_NUle7u_e10_FpuXh6f17aZwSlVT4WUNtfbglJWuqpTS3rZ1E1Bii63AVdN4HbzWwq4UYK06bTtogw-hkSicWrKree-exo9PTJPpx08a8kkjD18KoYXMrmp2ORpTIgxmT3Fn6duAMAdypjczOXMgZwBMJpdjN3MM8wdfEckkF3HIVCKhm4wf4_8LfgDMAHm9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622300902</pqid></control><display><type>article</type><title>Carbon fiber reinforced elastomeric thermal interface materials for spacecraft</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wu, Qi ; Li, Wenjun ; Liu, Chang ; Xu, Yawei ; Li, Guoguang ; Zhang, Hongxing ; Huang, Jinyin ; Miao, Jianyin</creator><creatorcontrib>Wu, Qi ; Li, Wenjun ; Liu, Chang ; Xu, Yawei ; Li, Guoguang ; Zhang, Hongxing ; Huang, Jinyin ; Miao, Jianyin</creatorcontrib><description>Due to the high-heat flux issue caused by the increasing power consumption of electronic devices in spacecraft, there is an urgent need but still a significant challenge to develop high thermal conductivity elastomeric thermal interface materials (TIMs) for spacecraft. In this study, mesophase pitch-based carbon fibers (CFs) are added as fillers on the basis of conventional alumina/silicone rubber TIMs, and the CFs are oriented in the matrix by a strong magnetic field during the preparation process. Attributed to the phonon-transport highways composed of vertically-oriented CFs and the synergistic improvement based on CFs and alumina, the through-plane thermal conductivity of the final elastomeric composite with 20 vol% CFs is increased by nearly 14 times compared with the alumina/silicone rubber composite, and it also confirms to the vacuum outgassing performance standard for spacecraft. Moreover, with the help of a verification system, the actual heat transfer capability of the composite is evaluated through the ground test and on-orbit test, and the results suggest that it has a perfect interface heat transfer capability both on the ground and in space, which reveals that this composite can potentially be applied as elastomeric TIM for spacecraft thermal control. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.11.039</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aluminum oxide ; Carbon fiber ; Carbon fibers ; Composite materials ; Elastomers ; Electronic devices ; Ground tests ; Heat conductivity ; Heat flux ; Heat transfer ; Magnetic orientation ; Outgassing ; Performance standards ; Power consumption ; Silicone resins ; Silicone rubber ; Spacecraft ; Spacecraft construction materials ; Thermal conductivity ; Thermal interface material</subject><ispartof>Carbon (New York), 2022-02, Vol.187, p.432-438</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d25159d1c3a2c44339da856fe2e8e80e766d9fd990a731e53b9ab18fdff62e0c3</citedby><cites>FETCH-LOGICAL-c334t-d25159d1c3a2c44339da856fe2e8e80e766d9fd990a731e53b9ab18fdff62e0c3</cites><orcidid>0000-0003-1226-9675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.11.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Li, Wenjun</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Xu, Yawei</creatorcontrib><creatorcontrib>Li, Guoguang</creatorcontrib><creatorcontrib>Zhang, Hongxing</creatorcontrib><creatorcontrib>Huang, Jinyin</creatorcontrib><creatorcontrib>Miao, Jianyin</creatorcontrib><title>Carbon fiber reinforced elastomeric thermal interface materials for spacecraft</title><title>Carbon (New York)</title><description>Due to the high-heat flux issue caused by the increasing power consumption of electronic devices in spacecraft, there is an urgent need but still a significant challenge to develop high thermal conductivity elastomeric thermal interface materials (TIMs) for spacecraft. In this study, mesophase pitch-based carbon fibers (CFs) are added as fillers on the basis of conventional alumina/silicone rubber TIMs, and the CFs are oriented in the matrix by a strong magnetic field during the preparation process. Attributed to the phonon-transport highways composed of vertically-oriented CFs and the synergistic improvement based on CFs and alumina, the through-plane thermal conductivity of the final elastomeric composite with 20 vol% CFs is increased by nearly 14 times compared with the alumina/silicone rubber composite, and it also confirms to the vacuum outgassing performance standard for spacecraft. Moreover, with the help of a verification system, the actual heat transfer capability of the composite is evaluated through the ground test and on-orbit test, and the results suggest that it has a perfect interface heat transfer capability both on the ground and in space, which reveals that this composite can potentially be applied as elastomeric TIM for spacecraft thermal control. [Display omitted]</description><subject>Aluminum oxide</subject><subject>Carbon fiber</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Elastomers</subject><subject>Electronic devices</subject><subject>Ground tests</subject><subject>Heat conductivity</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Magnetic orientation</subject><subject>Outgassing</subject><subject>Performance standards</subject><subject>Power consumption</subject><subject>Silicone resins</subject><subject>Silicone rubber</subject><subject>Spacecraft</subject><subject>Spacecraft construction materials</subject><subject>Thermal conductivity</subject><subject>Thermal interface material</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Bz62ZpO02F0EW_8GiFz2HNJlgym67TqrgtzdrPXuamcd7M8yPsUsQJQhorvvSWerGoZRCQglQCqWP2ALalSpUq-GYLYQQbdFIqU7ZWUp9HqsWqgV7Xv8meYgdEieMQxjJoee4tWkad0jR8ekdaWe3PA4TUrAO-c7mLtpt4tnO0z5rjmyYztlJyCpe_NUle7u_e10_FpuXh6f17aZwSlVT4WUNtfbglJWuqpTS3rZ1E1Bii63AVdN4HbzWwq4UYK06bTtogw-hkSicWrKree-exo9PTJPpx08a8kkjD18KoYXMrmp2ORpTIgxmT3Fn6duAMAdypjczOXMgZwBMJpdjN3MM8wdfEckkF3HIVCKhm4wf4_8LfgDMAHm9</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Wu, Qi</creator><creator>Li, Wenjun</creator><creator>Liu, Chang</creator><creator>Xu, Yawei</creator><creator>Li, Guoguang</creator><creator>Zhang, Hongxing</creator><creator>Huang, Jinyin</creator><creator>Miao, Jianyin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1226-9675</orcidid></search><sort><creationdate>202202</creationdate><title>Carbon fiber reinforced elastomeric thermal interface materials for spacecraft</title><author>Wu, Qi ; Li, Wenjun ; Liu, Chang ; Xu, Yawei ; Li, Guoguang ; Zhang, Hongxing ; Huang, Jinyin ; Miao, Jianyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d25159d1c3a2c44339da856fe2e8e80e766d9fd990a731e53b9ab18fdff62e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Carbon fiber</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Elastomers</topic><topic>Electronic devices</topic><topic>Ground tests</topic><topic>Heat conductivity</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Magnetic orientation</topic><topic>Outgassing</topic><topic>Performance standards</topic><topic>Power consumption</topic><topic>Silicone resins</topic><topic>Silicone rubber</topic><topic>Spacecraft</topic><topic>Spacecraft construction materials</topic><topic>Thermal conductivity</topic><topic>Thermal interface material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Li, Wenjun</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Xu, Yawei</creatorcontrib><creatorcontrib>Li, Guoguang</creatorcontrib><creatorcontrib>Zhang, Hongxing</creatorcontrib><creatorcontrib>Huang, Jinyin</creatorcontrib><creatorcontrib>Miao, Jianyin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qi</au><au>Li, Wenjun</au><au>Liu, Chang</au><au>Xu, Yawei</au><au>Li, Guoguang</au><au>Zhang, Hongxing</au><au>Huang, Jinyin</au><au>Miao, Jianyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon fiber reinforced elastomeric thermal interface materials for spacecraft</atitle><jtitle>Carbon (New York)</jtitle><date>2022-02</date><risdate>2022</risdate><volume>187</volume><spage>432</spage><epage>438</epage><pages>432-438</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Due to the high-heat flux issue caused by the increasing power consumption of electronic devices in spacecraft, there is an urgent need but still a significant challenge to develop high thermal conductivity elastomeric thermal interface materials (TIMs) for spacecraft. In this study, mesophase pitch-based carbon fibers (CFs) are added as fillers on the basis of conventional alumina/silicone rubber TIMs, and the CFs are oriented in the matrix by a strong magnetic field during the preparation process. Attributed to the phonon-transport highways composed of vertically-oriented CFs and the synergistic improvement based on CFs and alumina, the through-plane thermal conductivity of the final elastomeric composite with 20 vol% CFs is increased by nearly 14 times compared with the alumina/silicone rubber composite, and it also confirms to the vacuum outgassing performance standard for spacecraft. Moreover, with the help of a verification system, the actual heat transfer capability of the composite is evaluated through the ground test and on-orbit test, and the results suggest that it has a perfect interface heat transfer capability both on the ground and in space, which reveals that this composite can potentially be applied as elastomeric TIM for spacecraft thermal control. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.11.039</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1226-9675</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2022-02, Vol.187, p.432-438
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2622300902
source Elsevier ScienceDirect Journals Complete
subjects Aluminum oxide
Carbon fiber
Carbon fibers
Composite materials
Elastomers
Electronic devices
Ground tests
Heat conductivity
Heat flux
Heat transfer
Magnetic orientation
Outgassing
Performance standards
Power consumption
Silicone resins
Silicone rubber
Spacecraft
Spacecraft construction materials
Thermal conductivity
Thermal interface material
title Carbon fiber reinforced elastomeric thermal interface materials for spacecraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T19%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20fiber%20reinforced%20elastomeric%20thermal%20interface%20materials%20for%20spacecraft&rft.jtitle=Carbon%20(New%20York)&rft.au=Wu,%20Qi&rft.date=2022-02&rft.volume=187&rft.spage=432&rft.epage=438&rft.pages=432-438&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.11.039&rft_dat=%3Cproquest_cross%3E2622300902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622300902&rft_id=info:pmid/&rft_els_id=S0008622321011179&rfr_iscdi=true