Physical Model for Electrochemical Oxidation of Composite Ceramics

The paper examines the corrosion behavior of dense ZrB 2 -based ceramic samples in simulated seawater (3% NaCl solution) using polarization curves of electrochemical oxidation (ECO). The dense ceramic samples of 3–5% porosity were produced by hot pressing and had the following composition (wt.%): Zr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder metallurgy and metal ceramics 2021-09, Vol.60 (5-6), p.346-351
Hauptverfasser: Grigoriev, O.N., Lavrenko, V.A., Podchernyaeva, I.A., Yurechko, D.V., Talash, V.M., Shvets, V.A., Vedel, D.V., Panashenko, V.M., Labunets, V.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 5-6
container_start_page 346
container_title Powder metallurgy and metal ceramics
container_volume 60
creator Grigoriev, O.N.
Lavrenko, V.A.
Podchernyaeva, I.A.
Yurechko, D.V.
Talash, V.M.
Shvets, V.A.
Vedel, D.V.
Panashenko, V.M.
Labunets, V.F.
description The paper examines the corrosion behavior of dense ZrB 2 -based ceramic samples in simulated seawater (3% NaCl solution) using polarization curves of electrochemical oxidation (ECO). The dense ceramic samples of 3–5% porosity were produced by hot pressing and had the following composition (wt.%): ZrB 2 , 77 ZrB 2 –23 SiC, 70 ZrB 2 –20 SiC–10 AlN, and 60 ZrB 2 –20 SiC– 20 (Al 2 O 3 –ZrO 2 ). The main ECO parameters were the conduction current i , corrosion current i corr ( i value at which d i /d E decreased through diversion of some oxygen ions to oxidize the material), and anode potential E a ( E value at which the protective oxide film failed ( i > 0)). A two-stage model of the ECO process was proposed upon analysis of the experimental data. At the first stage ( E < E a , i = 0), an oxide film developed on the effective surface: the higher the protective function of the oxide film, the greater its thermodynamic stability. The second ECO stage ( E > E a , i > 0) had two steps of changing the conduction current i , carried by negative oxygen ions. The first step was characterized by an avalanche-like increase in i at E = E a up to maximum i = i corr , at which the rate of change in i decreased with increasing anode potential (d i /d E ). At higher i corr (second step), the increase in i corr with greater E slowed down through the interaction of oxygen with the test material, i.e., through oxidation. The higher the maximum i corr value, the greater the oxidation resistance of the material. According to the proposed model, the highest values of E a and i corr in ECO conditions for ZrB 2 –SiC materials are reached when AlN is added as it promotes the formation of thermodynamically stable mullite in the protective film. An Al 2 O 3 –ZrO 2 oxide addition increases the oxidation resistance of the material (high i corr values) but does not change the composition of the outer borosilicate glass film. This explains the close anode potentials of the 77 ZrB 2 –23 SiC ( E a = 0.1 V) and 60 ZrB 2 –20 SiC–20 (68 Al 2 O 3 –32 ZrO 2 ) composites ( E a = 0 V).
doi_str_mv 10.1007/s11106-021-00249-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2622099070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A690084919</galeid><sourcerecordid>A690084919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-bb1072d2fbb3aa4a0b98a8a2be22aa26477cdaf4342d6a917acf70d2ef6f46dd3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwBzhV4tzhpCFpjmMaH9LQOMA5cptk69Q1I-kk9u_JViRuyAdb9vvYyUvILYUJBZD3kVIKIgdGcwDGVS7PyIg-yCJXIMR5qkGUOS2AXZKrGDcACeN0RB7f14fY1Nhmb97YNnM-ZPPW1n3w9dpuT5Pld2Owb3yXeZfN_HbnY9PbbGYDJkG8JhcO22hvfvOYfD7NP2Yv-WL5_DqbLvK6ANXnVUVBMsNcVRWIHKFSJZbIKssYIhNcytqg4wVnRqCiEmsnwTDrhOPCmGJM7oa9u-C_9jb2euP3oUsnNROMgVIgIakmg2qFrdVN53wfsE5hjr_xnXVN6k-FAii5oioBbADq4GMM1uldaLYYDpqCPpqrB3N1MlefzNUyQcUAxSTuVjb8veUf6gdMvHxn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622099070</pqid></control><display><type>article</type><title>Physical Model for Electrochemical Oxidation of Composite Ceramics</title><source>SpringerLink Journals</source><creator>Grigoriev, O.N. ; Lavrenko, V.A. ; Podchernyaeva, I.A. ; Yurechko, D.V. ; Talash, V.M. ; Shvets, V.A. ; Vedel, D.V. ; Panashenko, V.M. ; Labunets, V.F.</creator><creatorcontrib>Grigoriev, O.N. ; Lavrenko, V.A. ; Podchernyaeva, I.A. ; Yurechko, D.V. ; Talash, V.M. ; Shvets, V.A. ; Vedel, D.V. ; Panashenko, V.M. ; Labunets, V.F.</creatorcontrib><description>The paper examines the corrosion behavior of dense ZrB 2 -based ceramic samples in simulated seawater (3% NaCl solution) using polarization curves of electrochemical oxidation (ECO). The dense ceramic samples of 3–5% porosity were produced by hot pressing and had the following composition (wt.%): ZrB 2 , 77 ZrB 2 –23 SiC, 70 ZrB 2 –20 SiC–10 AlN, and 60 ZrB 2 –20 SiC– 20 (Al 2 O 3 –ZrO 2 ). The main ECO parameters were the conduction current i , corrosion current i corr ( i value at which d i /d E decreased through diversion of some oxygen ions to oxidize the material), and anode potential E a ( E value at which the protective oxide film failed ( i &gt; 0)). A two-stage model of the ECO process was proposed upon analysis of the experimental data. At the first stage ( E &lt; E a , i = 0), an oxide film developed on the effective surface: the higher the protective function of the oxide film, the greater its thermodynamic stability. The second ECO stage ( E &gt; E a , i &gt; 0) had two steps of changing the conduction current i , carried by negative oxygen ions. The first step was characterized by an avalanche-like increase in i at E = E a up to maximum i = i corr , at which the rate of change in i decreased with increasing anode potential (d i /d E ). At higher i corr (second step), the increase in i corr with greater E slowed down through the interaction of oxygen with the test material, i.e., through oxidation. The higher the maximum i corr value, the greater the oxidation resistance of the material. According to the proposed model, the highest values of E a and i corr in ECO conditions for ZrB 2 –SiC materials are reached when AlN is added as it promotes the formation of thermodynamically stable mullite in the protective film. An Al 2 O 3 –ZrO 2 oxide addition increases the oxidation resistance of the material (high i corr values) but does not change the composition of the outer borosilicate glass film. This explains the close anode potentials of the 77 ZrB 2 –23 SiC ( E a = 0.1 V) and 60 ZrB 2 –20 SiC–20 (68 Al 2 O 3 –32 ZrO 2 ) composites ( E a = 0 V).</description><identifier>ISSN: 1068-1302</identifier><identifier>EISSN: 1573-9066</identifier><identifier>DOI: 10.1007/s11106-021-00249-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum compounds ; Aluminum oxide ; Anodes ; Anodic protection ; Borosilicate glass ; Ceramic materials ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Composition ; Corrosion currents ; Electrochemical oxidation ; Electrode polarization ; Glass ; Hot pressing ; Materials Science ; Metallic Materials ; Mullite ; Natural Materials ; Oxidation ; Oxidation resistance ; Oxidation-reduction reaction ; Oxide coatings ; Oxygen ions ; Porosity ; Refractory materials ; Seawater ; Silicon carbide ; Silicon compounds ; Thermodynamics ; Zirconium compounds ; Zirconium dioxide</subject><ispartof>Powder metallurgy and metal ceramics, 2021-09, Vol.60 (5-6), p.346-351</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-bb1072d2fbb3aa4a0b98a8a2be22aa26477cdaf4342d6a917acf70d2ef6f46dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11106-021-00249-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11106-021-00249-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Grigoriev, O.N.</creatorcontrib><creatorcontrib>Lavrenko, V.A.</creatorcontrib><creatorcontrib>Podchernyaeva, I.A.</creatorcontrib><creatorcontrib>Yurechko, D.V.</creatorcontrib><creatorcontrib>Talash, V.M.</creatorcontrib><creatorcontrib>Shvets, V.A.</creatorcontrib><creatorcontrib>Vedel, D.V.</creatorcontrib><creatorcontrib>Panashenko, V.M.</creatorcontrib><creatorcontrib>Labunets, V.F.</creatorcontrib><title>Physical Model for Electrochemical Oxidation of Composite Ceramics</title><title>Powder metallurgy and metal ceramics</title><addtitle>Powder Metall Met Ceram</addtitle><description>The paper examines the corrosion behavior of dense ZrB 2 -based ceramic samples in simulated seawater (3% NaCl solution) using polarization curves of electrochemical oxidation (ECO). The dense ceramic samples of 3–5% porosity were produced by hot pressing and had the following composition (wt.%): ZrB 2 , 77 ZrB 2 –23 SiC, 70 ZrB 2 –20 SiC–10 AlN, and 60 ZrB 2 –20 SiC– 20 (Al 2 O 3 –ZrO 2 ). The main ECO parameters were the conduction current i , corrosion current i corr ( i value at which d i /d E decreased through diversion of some oxygen ions to oxidize the material), and anode potential E a ( E value at which the protective oxide film failed ( i &gt; 0)). A two-stage model of the ECO process was proposed upon analysis of the experimental data. At the first stage ( E &lt; E a , i = 0), an oxide film developed on the effective surface: the higher the protective function of the oxide film, the greater its thermodynamic stability. The second ECO stage ( E &gt; E a , i &gt; 0) had two steps of changing the conduction current i , carried by negative oxygen ions. The first step was characterized by an avalanche-like increase in i at E = E a up to maximum i = i corr , at which the rate of change in i decreased with increasing anode potential (d i /d E ). At higher i corr (second step), the increase in i corr with greater E slowed down through the interaction of oxygen with the test material, i.e., through oxidation. The higher the maximum i corr value, the greater the oxidation resistance of the material. According to the proposed model, the highest values of E a and i corr in ECO conditions for ZrB 2 –SiC materials are reached when AlN is added as it promotes the formation of thermodynamically stable mullite in the protective film. An Al 2 O 3 –ZrO 2 oxide addition increases the oxidation resistance of the material (high i corr values) but does not change the composition of the outer borosilicate glass film. This explains the close anode potentials of the 77 ZrB 2 –23 SiC ( E a = 0.1 V) and 60 ZrB 2 –20 SiC–20 (68 Al 2 O 3 –32 ZrO 2 ) composites ( E a = 0 V).</description><subject>Aluminum compounds</subject><subject>Aluminum oxide</subject><subject>Anodes</subject><subject>Anodic protection</subject><subject>Borosilicate glass</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Composition</subject><subject>Corrosion currents</subject><subject>Electrochemical oxidation</subject><subject>Electrode polarization</subject><subject>Glass</subject><subject>Hot pressing</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Mullite</subject><subject>Natural Materials</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxidation-reduction reaction</subject><subject>Oxide coatings</subject><subject>Oxygen ions</subject><subject>Porosity</subject><subject>Refractory materials</subject><subject>Seawater</subject><subject>Silicon carbide</subject><subject>Silicon compounds</subject><subject>Thermodynamics</subject><subject>Zirconium compounds</subject><subject>Zirconium dioxide</subject><issn>1068-1302</issn><issn>1573-9066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwBzhV4tzhpCFpjmMaH9LQOMA5cptk69Q1I-kk9u_JViRuyAdb9vvYyUvILYUJBZD3kVIKIgdGcwDGVS7PyIg-yCJXIMR5qkGUOS2AXZKrGDcACeN0RB7f14fY1Nhmb97YNnM-ZPPW1n3w9dpuT5Pld2Owb3yXeZfN_HbnY9PbbGYDJkG8JhcO22hvfvOYfD7NP2Yv-WL5_DqbLvK6ANXnVUVBMsNcVRWIHKFSJZbIKssYIhNcytqg4wVnRqCiEmsnwTDrhOPCmGJM7oa9u-C_9jb2euP3oUsnNROMgVIgIakmg2qFrdVN53wfsE5hjr_xnXVN6k-FAii5oioBbADq4GMM1uldaLYYDpqCPpqrB3N1MlefzNUyQcUAxSTuVjb8veUf6gdMvHxn</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Grigoriev, O.N.</creator><creator>Lavrenko, V.A.</creator><creator>Podchernyaeva, I.A.</creator><creator>Yurechko, D.V.</creator><creator>Talash, V.M.</creator><creator>Shvets, V.A.</creator><creator>Vedel, D.V.</creator><creator>Panashenko, V.M.</creator><creator>Labunets, V.F.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Physical Model for Electrochemical Oxidation of Composite Ceramics</title><author>Grigoriev, O.N. ; Lavrenko, V.A. ; Podchernyaeva, I.A. ; Yurechko, D.V. ; Talash, V.M. ; Shvets, V.A. ; Vedel, D.V. ; Panashenko, V.M. ; Labunets, V.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-bb1072d2fbb3aa4a0b98a8a2be22aa26477cdaf4342d6a917acf70d2ef6f46dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum compounds</topic><topic>Aluminum oxide</topic><topic>Anodes</topic><topic>Anodic protection</topic><topic>Borosilicate glass</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Composition</topic><topic>Corrosion currents</topic><topic>Electrochemical oxidation</topic><topic>Electrode polarization</topic><topic>Glass</topic><topic>Hot pressing</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Mullite</topic><topic>Natural Materials</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxidation-reduction reaction</topic><topic>Oxide coatings</topic><topic>Oxygen ions</topic><topic>Porosity</topic><topic>Refractory materials</topic><topic>Seawater</topic><topic>Silicon carbide</topic><topic>Silicon compounds</topic><topic>Thermodynamics</topic><topic>Zirconium compounds</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigoriev, O.N.</creatorcontrib><creatorcontrib>Lavrenko, V.A.</creatorcontrib><creatorcontrib>Podchernyaeva, I.A.</creatorcontrib><creatorcontrib>Yurechko, D.V.</creatorcontrib><creatorcontrib>Talash, V.M.</creatorcontrib><creatorcontrib>Shvets, V.A.</creatorcontrib><creatorcontrib>Vedel, D.V.</creatorcontrib><creatorcontrib>Panashenko, V.M.</creatorcontrib><creatorcontrib>Labunets, V.F.</creatorcontrib><collection>CrossRef</collection><jtitle>Powder metallurgy and metal ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigoriev, O.N.</au><au>Lavrenko, V.A.</au><au>Podchernyaeva, I.A.</au><au>Yurechko, D.V.</au><au>Talash, V.M.</au><au>Shvets, V.A.</au><au>Vedel, D.V.</au><au>Panashenko, V.M.</au><au>Labunets, V.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Model for Electrochemical Oxidation of Composite Ceramics</atitle><jtitle>Powder metallurgy and metal ceramics</jtitle><stitle>Powder Metall Met Ceram</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>60</volume><issue>5-6</issue><spage>346</spage><epage>351</epage><pages>346-351</pages><issn>1068-1302</issn><eissn>1573-9066</eissn><abstract>The paper examines the corrosion behavior of dense ZrB 2 -based ceramic samples in simulated seawater (3% NaCl solution) using polarization curves of electrochemical oxidation (ECO). The dense ceramic samples of 3–5% porosity were produced by hot pressing and had the following composition (wt.%): ZrB 2 , 77 ZrB 2 –23 SiC, 70 ZrB 2 –20 SiC–10 AlN, and 60 ZrB 2 –20 SiC– 20 (Al 2 O 3 –ZrO 2 ). The main ECO parameters were the conduction current i , corrosion current i corr ( i value at which d i /d E decreased through diversion of some oxygen ions to oxidize the material), and anode potential E a ( E value at which the protective oxide film failed ( i &gt; 0)). A two-stage model of the ECO process was proposed upon analysis of the experimental data. At the first stage ( E &lt; E a , i = 0), an oxide film developed on the effective surface: the higher the protective function of the oxide film, the greater its thermodynamic stability. The second ECO stage ( E &gt; E a , i &gt; 0) had two steps of changing the conduction current i , carried by negative oxygen ions. The first step was characterized by an avalanche-like increase in i at E = E a up to maximum i = i corr , at which the rate of change in i decreased with increasing anode potential (d i /d E ). At higher i corr (second step), the increase in i corr with greater E slowed down through the interaction of oxygen with the test material, i.e., through oxidation. The higher the maximum i corr value, the greater the oxidation resistance of the material. According to the proposed model, the highest values of E a and i corr in ECO conditions for ZrB 2 –SiC materials are reached when AlN is added as it promotes the formation of thermodynamically stable mullite in the protective film. An Al 2 O 3 –ZrO 2 oxide addition increases the oxidation resistance of the material (high i corr values) but does not change the composition of the outer borosilicate glass film. This explains the close anode potentials of the 77 ZrB 2 –23 SiC ( E a = 0.1 V) and 60 ZrB 2 –20 SiC–20 (68 Al 2 O 3 –32 ZrO 2 ) composites ( E a = 0 V).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11106-021-00249-7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-1302
ispartof Powder metallurgy and metal ceramics, 2021-09, Vol.60 (5-6), p.346-351
issn 1068-1302
1573-9066
language eng
recordid cdi_proquest_journals_2622099070
source SpringerLink Journals
subjects Aluminum compounds
Aluminum oxide
Anodes
Anodic protection
Borosilicate glass
Ceramic materials
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Composition
Corrosion currents
Electrochemical oxidation
Electrode polarization
Glass
Hot pressing
Materials Science
Metallic Materials
Mullite
Natural Materials
Oxidation
Oxidation resistance
Oxidation-reduction reaction
Oxide coatings
Oxygen ions
Porosity
Refractory materials
Seawater
Silicon carbide
Silicon compounds
Thermodynamics
Zirconium compounds
Zirconium dioxide
title Physical Model for Electrochemical Oxidation of Composite Ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Model%20for%20Electrochemical%20Oxidation%20of%20Composite%20Ceramics&rft.jtitle=Powder%20metallurgy%20and%20metal%20ceramics&rft.au=Grigoriev,%20O.N.&rft.date=2021-09-01&rft.volume=60&rft.issue=5-6&rft.spage=346&rft.epage=351&rft.pages=346-351&rft.issn=1068-1302&rft.eissn=1573-9066&rft_id=info:doi/10.1007/s11106-021-00249-7&rft_dat=%3Cgale_proqu%3EA690084919%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622099070&rft_id=info:pmid/&rft_galeid=A690084919&rfr_iscdi=true