Orbital Stability of Nonlinear Schrödinger–Kirchhoff Equations

In this paper, we study the following equations 0.1 i ϕ t = - A ( | | ∇ ϕ | | 2 ) Δ ϕ - | ϕ | p - 1 ϕ , t > 0 , x ∈ R n , ϕ ( x , 0 ) = ϕ 0 ( x ) ∈ H 1 ( R n ) , where n ≥ 1 , 1 < p < n + 4 n , A ( s ) is a function. Under suitable conditions on A ( s ), we use Lyapunov method to prove the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2022-02, Vol.19 (1), Article 36
1. Verfasser: Lan, Enhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Mediterranean journal of mathematics
container_volume 19
creator Lan, Enhao
description In this paper, we study the following equations 0.1 i ϕ t = - A ( | | ∇ ϕ | | 2 ) Δ ϕ - | ϕ | p - 1 ϕ , t > 0 , x ∈ R n , ϕ ( x , 0 ) = ϕ 0 ( x ) ∈ H 1 ( R n ) , where n ≥ 1 , 1 < p < n + 4 n , A ( s ) is a function. Under suitable conditions on A ( s ), we use Lyapunov method to prove the orbital stability of standing wave for ( 0.1 ).
doi_str_mv 10.1007/s00009-021-01969-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622098976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622098976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-69e699ef8e205ccd228270f0e1302e6d33fd1052c010161e0e6303631719bbe23</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWAdm7MSpl1VVfkRFF4W1lTg2dRXi1k4X3XEH7sIFuAknwSUIdsxmRqP33mg-Qs4RLhGguAoQS6RAMQUUXKR4QAbIOaR5lmeHv3PGj8lJCCsAKpDRARnPfWW7skkWXVnZxna7xJnkwbWNbXXpk4Va-o_32rbP2n--vt1br5ZLZ0wy3WzLzro2nJIjUzZBn_30IXm6nj5ObtPZ_OZuMp6lihbQpVxoLoQ2I00hV6qmdBT3BjQyoJrXjJkaIacKEJCjBs0ZMM6wQFFVmrIhuehz195ttjp0cuW2vo0nJeWUghiJgkcV7VXKuxC8NnLt7UvpdxJB7lHJHpWMqOQ3KonRxHpTiOL9p3_R_7i-AJgcbCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622098976</pqid></control><display><type>article</type><title>Orbital Stability of Nonlinear Schrödinger–Kirchhoff Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lan, Enhao</creator><creatorcontrib>Lan, Enhao</creatorcontrib><description>In this paper, we study the following equations 0.1 i ϕ t = - A ( | | ∇ ϕ | | 2 ) Δ ϕ - | ϕ | p - 1 ϕ , t &gt; 0 , x ∈ R n , ϕ ( x , 0 ) = ϕ 0 ( x ) ∈ H 1 ( R n ) , where n ≥ 1 , 1 &lt; p &lt; n + 4 n , A ( s ) is a function. Under suitable conditions on A ( s ), we use Lyapunov method to prove the orbital stability of standing wave for ( 0.1 ).</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-021-01969-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Orbital stability ; Standing waves</subject><ispartof>Mediterranean journal of mathematics, 2022-02, Vol.19 (1), Article 36</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-69e699ef8e205ccd228270f0e1302e6d33fd1052c010161e0e6303631719bbe23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-021-01969-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-021-01969-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lan, Enhao</creatorcontrib><title>Orbital Stability of Nonlinear Schrödinger–Kirchhoff Equations</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>In this paper, we study the following equations 0.1 i ϕ t = - A ( | | ∇ ϕ | | 2 ) Δ ϕ - | ϕ | p - 1 ϕ , t &gt; 0 , x ∈ R n , ϕ ( x , 0 ) = ϕ 0 ( x ) ∈ H 1 ( R n ) , where n ≥ 1 , 1 &lt; p &lt; n + 4 n , A ( s ) is a function. Under suitable conditions on A ( s ), we use Lyapunov method to prove the orbital stability of standing wave for ( 0.1 ).</description><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbital stability</subject><subject>Standing waves</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWAdm7MSpl1VVfkRFF4W1lTg2dRXi1k4X3XEH7sIFuAknwSUIdsxmRqP33mg-Qs4RLhGguAoQS6RAMQUUXKR4QAbIOaR5lmeHv3PGj8lJCCsAKpDRARnPfWW7skkWXVnZxna7xJnkwbWNbXXpk4Va-o_32rbP2n--vt1br5ZLZ0wy3WzLzro2nJIjUzZBn_30IXm6nj5ObtPZ_OZuMp6lihbQpVxoLoQ2I00hV6qmdBT3BjQyoJrXjJkaIacKEJCjBs0ZMM6wQFFVmrIhuehz195ttjp0cuW2vo0nJeWUghiJgkcV7VXKuxC8NnLt7UvpdxJB7lHJHpWMqOQ3KonRxHpTiOL9p3_R_7i-AJgcbCQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Lan, Enhao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Orbital Stability of Nonlinear Schrödinger–Kirchhoff Equations</title><author>Lan, Enhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-69e699ef8e205ccd228270f0e1302e6d33fd1052c010161e0e6303631719bbe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbital stability</topic><topic>Standing waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Enhao</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Enhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital Stability of Nonlinear Schrödinger–Kirchhoff Equations</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>19</volume><issue>1</issue><artnum>36</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>In this paper, we study the following equations 0.1 i ϕ t = - A ( | | ∇ ϕ | | 2 ) Δ ϕ - | ϕ | p - 1 ϕ , t &gt; 0 , x ∈ R n , ϕ ( x , 0 ) = ϕ 0 ( x ) ∈ H 1 ( R n ) , where n ≥ 1 , 1 &lt; p &lt; n + 4 n , A ( s ) is a function. Under suitable conditions on A ( s ), we use Lyapunov method to prove the orbital stability of standing wave for ( 0.1 ).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-021-01969-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2022-02, Vol.19 (1), Article 36
issn 1660-5446
1660-5454
language eng
recordid cdi_proquest_journals_2622098976
source SpringerLink Journals - AutoHoldings
subjects Mathematical analysis
Mathematics
Mathematics and Statistics
Orbital stability
Standing waves
title Orbital Stability of Nonlinear Schrödinger–Kirchhoff Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20Stability%20of%20Nonlinear%20Schr%C3%B6dinger%E2%80%93Kirchhoff%20Equations&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Lan,%20Enhao&rft.date=2022-02-01&rft.volume=19&rft.issue=1&rft.artnum=36&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-021-01969-1&rft_dat=%3Cproquest_cross%3E2622098976%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622098976&rft_id=info:pmid/&rfr_iscdi=true