Thermal spin–orbit torque in spintronics
Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation a...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2022, Vol.95 (1), Article 15 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 95 |
creator | Wang, Zheng-Chuan |
description | Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation around local equilibrium distribution; then, the spin diffusion equation can be derived from SBE, where the spin transfer torque, spin orbit torque as well as thermal spin–orbit torque can be naturally obtained. It is shown that this thermal spin–orbit torque originates from the temperature gradient of local equilibrium distribution function, which is explicit and straightforward than previous works. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Rashba spin–orbit coupling, in which those torques driven whatever by temperature gradient or bias are manifested quantitatively.
Graphic abstract
We proposed a new expression for the thermal spin–orbit torque, which can be unified with the usual spin orbit torque as a generalized spin orbit torque. |
doi_str_mv | 10.1140/epjb/s10051-022-00275-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2622098529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691221956</galeid><sourcerecordid>A691221956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-4a791a51d7ed75ef7c69df48fe3e1630723233946e1f204daa5586b313fcf7b3</originalsourceid><addsrcrecordid>eNqFkM1KAzEQx4MoWKvPYMGTwraZfO4eS_GjUBC095DdTWpKu6nJFvTmO_iGPolpV5SeJIcJw-83M_wRugQ8BGB4ZDbLchQBYw4ZJiTDmEie0SPUA0ZZJjAVx79_kp-isxiXGGMQwHroZv5iwlqvBnHjmq-PTx9K1w5aH163ZuCafbsNvnFVPEcnVq-iufipfTS_u51PHrLZ4_10Mp5lFeW0zZiWBWgOtTS15MbKShS1Zbk11ICgWBJKKC2YMGAJZrXWnOeipEBtZWVJ--iqG7sJPh0RW7X029CkjYoIQnCRc1IkathRC70yyjXWt0FX6dVm7SrfGOtSfywKIAQKLpJwfSAkpjVv7UJvY1TT56dDVnZsFXyMwVi1CW6tw7sCrHahq13oqgtdpdDVPnRFk5l3ZkxGszDh7_j_1G8rHobk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622098529</pqid></control><display><type>article</type><title>Thermal spin–orbit torque in spintronics</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Zheng-Chuan</creator><creatorcontrib>Wang, Zheng-Chuan</creatorcontrib><description>Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation around local equilibrium distribution; then, the spin diffusion equation can be derived from SBE, where the spin transfer torque, spin orbit torque as well as thermal spin–orbit torque can be naturally obtained. It is shown that this thermal spin–orbit torque originates from the temperature gradient of local equilibrium distribution function, which is explicit and straightforward than previous works. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Rashba spin–orbit coupling, in which those torques driven whatever by temperature gradient or bias are manifested quantitatively.
Graphic abstract
We proposed a new expression for the thermal spin–orbit torque, which can be unified with the usual spin orbit torque as a generalized spin orbit torque.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-022-00275-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boltzmann transport equation ; Complex Systems ; Condensed Matter Physics ; Distribution (Probability theory) ; Distribution functions ; Equilibrium ; Ferromagnetism ; Fluid- and Aerodynamics ; Mathematical analysis ; Physics ; Physics and Astronomy ; Regular Article - Solid State and Materials ; Solid State Physics ; Spin coupling ; Spin-orbit interactions ; Spintronics ; Temperature dependence ; Torque</subject><ispartof>The European physical journal. B, Condensed matter physics, 2022, Vol.95 (1), Article 15</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-4a791a51d7ed75ef7c69df48fe3e1630723233946e1f204daa5586b313fcf7b3</cites><orcidid>0000-0003-1136-7724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-022-00275-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-022-00275-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Zheng-Chuan</creatorcontrib><title>Thermal spin–orbit torque in spintronics</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation around local equilibrium distribution; then, the spin diffusion equation can be derived from SBE, where the spin transfer torque, spin orbit torque as well as thermal spin–orbit torque can be naturally obtained. It is shown that this thermal spin–orbit torque originates from the temperature gradient of local equilibrium distribution function, which is explicit and straightforward than previous works. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Rashba spin–orbit coupling, in which those torques driven whatever by temperature gradient or bias are manifested quantitatively.
Graphic abstract
We proposed a new expression for the thermal spin–orbit torque, which can be unified with the usual spin orbit torque as a generalized spin orbit torque.</description><subject>Boltzmann transport equation</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Distribution (Probability theory)</subject><subject>Distribution functions</subject><subject>Equilibrium</subject><subject>Ferromagnetism</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article - Solid State and Materials</subject><subject>Solid State Physics</subject><subject>Spin coupling</subject><subject>Spin-orbit interactions</subject><subject>Spintronics</subject><subject>Temperature dependence</subject><subject>Torque</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEQx4MoWKvPYMGTwraZfO4eS_GjUBC095DdTWpKu6nJFvTmO_iGPolpV5SeJIcJw-83M_wRugQ8BGB4ZDbLchQBYw4ZJiTDmEie0SPUA0ZZJjAVx79_kp-isxiXGGMQwHroZv5iwlqvBnHjmq-PTx9K1w5aH163ZuCafbsNvnFVPEcnVq-iufipfTS_u51PHrLZ4_10Mp5lFeW0zZiWBWgOtTS15MbKShS1Zbk11ICgWBJKKC2YMGAJZrXWnOeipEBtZWVJ--iqG7sJPh0RW7X029CkjYoIQnCRc1IkathRC70yyjXWt0FX6dVm7SrfGOtSfywKIAQKLpJwfSAkpjVv7UJvY1TT56dDVnZsFXyMwVi1CW6tw7sCrHahq13oqgtdpdDVPnRFk5l3ZkxGszDh7_j_1G8rHobk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wang, Zheng-Chuan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0003-1136-7724</orcidid></search><sort><creationdate>2022</creationdate><title>Thermal spin–orbit torque in spintronics</title><author>Wang, Zheng-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-4a791a51d7ed75ef7c69df48fe3e1630723233946e1f204daa5586b313fcf7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boltzmann transport equation</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Distribution (Probability theory)</topic><topic>Distribution functions</topic><topic>Equilibrium</topic><topic>Ferromagnetism</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article - Solid State and Materials</topic><topic>Solid State Physics</topic><topic>Spin coupling</topic><topic>Spin-orbit interactions</topic><topic>Spintronics</topic><topic>Temperature dependence</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zheng-Chuan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zheng-Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal spin–orbit torque in spintronics</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2022</date><risdate>2022</risdate><volume>95</volume><issue>1</issue><artnum>15</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation around local equilibrium distribution; then, the spin diffusion equation can be derived from SBE, where the spin transfer torque, spin orbit torque as well as thermal spin–orbit torque can be naturally obtained. It is shown that this thermal spin–orbit torque originates from the temperature gradient of local equilibrium distribution function, which is explicit and straightforward than previous works. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Rashba spin–orbit coupling, in which those torques driven whatever by temperature gradient or bias are manifested quantitatively.
Graphic abstract
We proposed a new expression for the thermal spin–orbit torque, which can be unified with the usual spin orbit torque as a generalized spin orbit torque.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-022-00275-3</doi><orcidid>https://orcid.org/0000-0003-1136-7724</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2022, Vol.95 (1), Article 15 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_2622098529 |
source | Springer Nature - Complete Springer Journals |
subjects | Boltzmann transport equation Complex Systems Condensed Matter Physics Distribution (Probability theory) Distribution functions Equilibrium Ferromagnetism Fluid- and Aerodynamics Mathematical analysis Physics Physics and Astronomy Regular Article - Solid State and Materials Solid State Physics Spin coupling Spin-orbit interactions Spintronics Temperature dependence Torque |
title | Thermal spin–orbit torque in spintronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20spin%E2%80%93orbit%20torque%20in%20spintronics&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Wang,%20Zheng-Chuan&rft.date=2022&rft.volume=95&rft.issue=1&rft.artnum=15&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-022-00275-3&rft_dat=%3Cgale_proqu%3EA691221956%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622098529&rft_id=info:pmid/&rft_galeid=A691221956&rfr_iscdi=true |