Thermal spin–orbit torque in spintronics

Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2022, Vol.95 (1), Article 15
1. Verfasser: Wang, Zheng-Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The European physical journal. B, Condensed matter physics
container_volume 95
creator Wang, Zheng-Chuan
description Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation around local equilibrium distribution; then, the spin diffusion equation can be derived from SBE, where the spin transfer torque, spin orbit torque as well as thermal spin–orbit torque can be naturally obtained. It is shown that this thermal spin–orbit torque originates from the temperature gradient of local equilibrium distribution function, which is explicit and straightforward than previous works. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Rashba spin–orbit coupling, in which those torques driven whatever by temperature gradient or bias are manifested quantitatively. Graphic abstract We proposed a new expression for the thermal spin–orbit torque, which can be unified with the usual spin orbit torque as a generalized spin orbit torque.
doi_str_mv 10.1140/epjb/s10051-022-00275-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2622098529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691221956</galeid><sourcerecordid>A691221956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-4a791a51d7ed75ef7c69df48fe3e1630723233946e1f204daa5586b313fcf7b3</originalsourceid><addsrcrecordid>eNqFkM1KAzEQx4MoWKvPYMGTwraZfO4eS_GjUBC095DdTWpKu6nJFvTmO_iGPolpV5SeJIcJw-83M_wRugQ8BGB4ZDbLchQBYw4ZJiTDmEie0SPUA0ZZJjAVx79_kp-isxiXGGMQwHroZv5iwlqvBnHjmq-PTx9K1w5aH163ZuCafbsNvnFVPEcnVq-iufipfTS_u51PHrLZ4_10Mp5lFeW0zZiWBWgOtTS15MbKShS1Zbk11ICgWBJKKC2YMGAJZrXWnOeipEBtZWVJ--iqG7sJPh0RW7X029CkjYoIQnCRc1IkathRC70yyjXWt0FX6dVm7SrfGOtSfywKIAQKLpJwfSAkpjVv7UJvY1TT56dDVnZsFXyMwVi1CW6tw7sCrHahq13oqgtdpdDVPnRFk5l3ZkxGszDh7_j_1G8rHobk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622098529</pqid></control><display><type>article</type><title>Thermal spin–orbit torque in spintronics</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Zheng-Chuan</creator><creatorcontrib>Wang, Zheng-Chuan</creatorcontrib><description>Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation around local equilibrium distribution; then, the spin diffusion equation can be derived from SBE, where the spin transfer torque, spin orbit torque as well as thermal spin–orbit torque can be naturally obtained. It is shown that this thermal spin–orbit torque originates from the temperature gradient of local equilibrium distribution function, which is explicit and straightforward than previous works. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Rashba spin–orbit coupling, in which those torques driven whatever by temperature gradient or bias are manifested quantitatively. Graphic abstract We proposed a new expression for the thermal spin–orbit torque, which can be unified with the usual spin orbit torque as a generalized spin orbit torque.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-022-00275-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boltzmann transport equation ; Complex Systems ; Condensed Matter Physics ; Distribution (Probability theory) ; Distribution functions ; Equilibrium ; Ferromagnetism ; Fluid- and Aerodynamics ; Mathematical analysis ; Physics ; Physics and Astronomy ; Regular Article - Solid State and Materials ; Solid State Physics ; Spin coupling ; Spin-orbit interactions ; Spintronics ; Temperature dependence ; Torque</subject><ispartof>The European physical journal. B, Condensed matter physics, 2022, Vol.95 (1), Article 15</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-4a791a51d7ed75ef7c69df48fe3e1630723233946e1f204daa5586b313fcf7b3</cites><orcidid>0000-0003-1136-7724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-022-00275-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-022-00275-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Zheng-Chuan</creatorcontrib><title>Thermal spin–orbit torque in spintronics</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation around local equilibrium distribution; then, the spin diffusion equation can be derived from SBE, where the spin transfer torque, spin orbit torque as well as thermal spin–orbit torque can be naturally obtained. It is shown that this thermal spin–orbit torque originates from the temperature gradient of local equilibrium distribution function, which is explicit and straightforward than previous works. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Rashba spin–orbit coupling, in which those torques driven whatever by temperature gradient or bias are manifested quantitatively. Graphic abstract We proposed a new expression for the thermal spin–orbit torque, which can be unified with the usual spin orbit torque as a generalized spin orbit torque.</description><subject>Boltzmann transport equation</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Distribution (Probability theory)</subject><subject>Distribution functions</subject><subject>Equilibrium</subject><subject>Ferromagnetism</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article - Solid State and Materials</subject><subject>Solid State Physics</subject><subject>Spin coupling</subject><subject>Spin-orbit interactions</subject><subject>Spintronics</subject><subject>Temperature dependence</subject><subject>Torque</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEQx4MoWKvPYMGTwraZfO4eS_GjUBC095DdTWpKu6nJFvTmO_iGPolpV5SeJIcJw-83M_wRugQ8BGB4ZDbLchQBYw4ZJiTDmEie0SPUA0ZZJjAVx79_kp-isxiXGGMQwHroZv5iwlqvBnHjmq-PTx9K1w5aH163ZuCafbsNvnFVPEcnVq-iufipfTS_u51PHrLZ4_10Mp5lFeW0zZiWBWgOtTS15MbKShS1Zbk11ICgWBJKKC2YMGAJZrXWnOeipEBtZWVJ--iqG7sJPh0RW7X029CkjYoIQnCRc1IkathRC70yyjXWt0FX6dVm7SrfGOtSfywKIAQKLpJwfSAkpjVv7UJvY1TT56dDVnZsFXyMwVi1CW6tw7sCrHahq13oqgtdpdDVPnRFk5l3ZkxGszDh7_j_1G8rHobk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wang, Zheng-Chuan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0003-1136-7724</orcidid></search><sort><creationdate>2022</creationdate><title>Thermal spin–orbit torque in spintronics</title><author>Wang, Zheng-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-4a791a51d7ed75ef7c69df48fe3e1630723233946e1f204daa5586b313fcf7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boltzmann transport equation</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Distribution (Probability theory)</topic><topic>Distribution functions</topic><topic>Equilibrium</topic><topic>Ferromagnetism</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article - Solid State and Materials</topic><topic>Solid State Physics</topic><topic>Spin coupling</topic><topic>Spin-orbit interactions</topic><topic>Spintronics</topic><topic>Temperature dependence</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zheng-Chuan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zheng-Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal spin–orbit torque in spintronics</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2022</date><risdate>2022</risdate><volume>95</volume><issue>1</issue><artnum>15</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>Based on the spinor Boltzmann equation (SBE) formalism, we present a theory of temperature-dependent thermal spin–orbit torque for a system in the presence of Rashba spin–orbit interaction. Under the local equilibrium assumption, we can expand the distribution function of spinor Boltzmann equation around local equilibrium distribution; then, the spin diffusion equation can be derived from SBE, where the spin transfer torque, spin orbit torque as well as thermal spin–orbit torque can be naturally obtained. It is shown that this thermal spin–orbit torque originates from the temperature gradient of local equilibrium distribution function, which is explicit and straightforward than previous works. Finally, we illustrate them by an example of spin-polarized transport through a ferromagnet with Rashba spin–orbit coupling, in which those torques driven whatever by temperature gradient or bias are manifested quantitatively. Graphic abstract We proposed a new expression for the thermal spin–orbit torque, which can be unified with the usual spin orbit torque as a generalized spin orbit torque.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-022-00275-3</doi><orcidid>https://orcid.org/0000-0003-1136-7724</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2022, Vol.95 (1), Article 15
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_2622098529
source Springer Nature - Complete Springer Journals
subjects Boltzmann transport equation
Complex Systems
Condensed Matter Physics
Distribution (Probability theory)
Distribution functions
Equilibrium
Ferromagnetism
Fluid- and Aerodynamics
Mathematical analysis
Physics
Physics and Astronomy
Regular Article - Solid State and Materials
Solid State Physics
Spin coupling
Spin-orbit interactions
Spintronics
Temperature dependence
Torque
title Thermal spin–orbit torque in spintronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20spin%E2%80%93orbit%20torque%20in%20spintronics&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Wang,%20Zheng-Chuan&rft.date=2022&rft.volume=95&rft.issue=1&rft.artnum=15&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-022-00275-3&rft_dat=%3Cgale_proqu%3EA691221956%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622098529&rft_id=info:pmid/&rft_galeid=A691221956&rfr_iscdi=true