Toward On-Line Slag Composition Analysis: Optical Emissions from Laboratory Electric Arc

Electric arc furnaces and ladle furnaces have an important role in the future of steelmaking where CO 2 emissions have to be mitigated to an acceptable level. One way to address this goal is to optimize and improve the current practices by adjusting the chemistry and reactions with material addition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2022-02, Vol.53 (1), p.454-465
Hauptverfasser: Pauna, H., Tuomela, A., Aula, M., Turunen, P., Pankratov, V., Huttula, M., Fabritius, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 1
container_start_page 454
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 53
creator Pauna, H.
Tuomela, A.
Aula, M.
Turunen, P.
Pankratov, V.
Huttula, M.
Fabritius, T.
description Electric arc furnaces and ladle furnaces have an important role in the future of steelmaking where CO 2 emissions have to be mitigated to an acceptable level. One way to address this goal is to optimize and improve the current practices by adjusting the chemistry and reactions with material additions or gas injections. These procedures would greatly benefit from on-line slag composition analysis. Since the electric arcs radiate throughout the melting, optical emission spectroscopy is a potential method for such analysis. In this study, optical emissions from the electric arc are measured in a laboratory environment. Dozens of atomic emission lines were correlated with Cr 2 O 3 , Fe 2 O 3 , Al 2 O 3 , SiO 2 , MnO, MgO, CaO, CaF 2 , V 2 O 5 , and Ni content of the slag together with correlation between CaF 2 and molecular optical emission bands of CaF. Optimal spectral resolution for industrial applications was deducted to be between 0.022 and 0.179 nm.
doi_str_mv 10.1007/s11663-021-02382-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622096810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622096810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-38ccdf0417674a735dfc1bdc2074ec4f116b81cda3d9920e19c31ecefb72f3c23</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9FM0qatt2VZP6CwB1fwFtI0WbK0TU26yP57oxW8eRhmYN7nZeZF6AboHVBa3EcAITihDFLxkpH8BC0gzziBCsRpmmnBSS4gP0cXMe4ppaKq-AK9b_2nCi3eDKR2g8Gvndrhle9HH93k_ICXg-qO0cUHvBknp1WH172LMa0itsH3uFaND2ry4YjXndFTcBovg75CZ1Z10Vz_9kv09rjerp5JvXl6WS1rojlkE-Gl1q2lGRSiyFTB89ZqaFrNaJEZndn0V1OCbhVvq4pRA1XijDa2KZjlmvFLdDv7jsF_HEyc5N4fQjo6SiYYo5UogSYVm1U6-BiDsXIMrlfhKIHK7wTlnKBMCcqfBGWeID5DMYmHnQl_1v9QXwMVc-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622096810</pqid></control><display><type>article</type><title>Toward On-Line Slag Composition Analysis: Optical Emissions from Laboratory Electric Arc</title><source>SpringerNature Journals</source><creator>Pauna, H. ; Tuomela, A. ; Aula, M. ; Turunen, P. ; Pankratov, V. ; Huttula, M. ; Fabritius, T.</creator><creatorcontrib>Pauna, H. ; Tuomela, A. ; Aula, M. ; Turunen, P. ; Pankratov, V. ; Huttula, M. ; Fabritius, T.</creatorcontrib><description>Electric arc furnaces and ladle furnaces have an important role in the future of steelmaking where CO 2 emissions have to be mitigated to an acceptable level. One way to address this goal is to optimize and improve the current practices by adjusting the chemistry and reactions with material additions or gas injections. These procedures would greatly benefit from on-line slag composition analysis. Since the electric arcs radiate throughout the melting, optical emission spectroscopy is a potential method for such analysis. In this study, optical emissions from the electric arc are measured in a laboratory environment. Dozens of atomic emission lines were correlated with Cr 2 O 3 , Fe 2 O 3 , Al 2 O 3 , SiO 2 , MnO, MgO, CaO, CaF 2 , V 2 O 5 , and Ni content of the slag together with correlation between CaF 2 and molecular optical emission bands of CaF. Optimal spectral resolution for industrial applications was deducted to be between 0.022 and 0.179 nm.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-021-02382-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum oxide ; Calcium fluoride ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composition ; Electric arc furnaces ; Electric arcs ; Emission analysis ; Industrial applications ; Laboratories ; Ladle furnaces ; Ladle metallurgy ; Materials Science ; Metallic Materials ; Nanotechnology ; Optical emission spectroscopy ; Optimization ; Original Research Article ; Silicon dioxide ; Slag ; Spectral resolution ; Steel making ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2022-02, Vol.53 (1), p.454-465</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-38ccdf0417674a735dfc1bdc2074ec4f116b81cda3d9920e19c31ecefb72f3c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-021-02382-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-021-02382-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pauna, H.</creatorcontrib><creatorcontrib>Tuomela, A.</creatorcontrib><creatorcontrib>Aula, M.</creatorcontrib><creatorcontrib>Turunen, P.</creatorcontrib><creatorcontrib>Pankratov, V.</creatorcontrib><creatorcontrib>Huttula, M.</creatorcontrib><creatorcontrib>Fabritius, T.</creatorcontrib><title>Toward On-Line Slag Composition Analysis: Optical Emissions from Laboratory Electric Arc</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Electric arc furnaces and ladle furnaces have an important role in the future of steelmaking where CO 2 emissions have to be mitigated to an acceptable level. One way to address this goal is to optimize and improve the current practices by adjusting the chemistry and reactions with material additions or gas injections. These procedures would greatly benefit from on-line slag composition analysis. Since the electric arcs radiate throughout the melting, optical emission spectroscopy is a potential method for such analysis. In this study, optical emissions from the electric arc are measured in a laboratory environment. Dozens of atomic emission lines were correlated with Cr 2 O 3 , Fe 2 O 3 , Al 2 O 3 , SiO 2 , MnO, MgO, CaO, CaF 2 , V 2 O 5 , and Ni content of the slag together with correlation between CaF 2 and molecular optical emission bands of CaF. Optimal spectral resolution for industrial applications was deducted to be between 0.022 and 0.179 nm.</description><subject>Aluminum oxide</subject><subject>Calcium fluoride</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Electric arc furnaces</subject><subject>Electric arcs</subject><subject>Emission analysis</subject><subject>Industrial applications</subject><subject>Laboratories</subject><subject>Ladle furnaces</subject><subject>Ladle metallurgy</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Optical emission spectroscopy</subject><subject>Optimization</subject><subject>Original Research Article</subject><subject>Silicon dioxide</subject><subject>Slag</subject><subject>Spectral resolution</subject><subject>Steel making</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9FM0qatt2VZP6CwB1fwFtI0WbK0TU26yP57oxW8eRhmYN7nZeZF6AboHVBa3EcAITihDFLxkpH8BC0gzziBCsRpmmnBSS4gP0cXMe4ppaKq-AK9b_2nCi3eDKR2g8Gvndrhle9HH93k_ICXg-qO0cUHvBknp1WH172LMa0itsH3uFaND2ry4YjXndFTcBovg75CZ1Z10Vz_9kv09rjerp5JvXl6WS1rojlkE-Gl1q2lGRSiyFTB89ZqaFrNaJEZndn0V1OCbhVvq4pRA1XijDa2KZjlmvFLdDv7jsF_HEyc5N4fQjo6SiYYo5UogSYVm1U6-BiDsXIMrlfhKIHK7wTlnKBMCcqfBGWeID5DMYmHnQl_1v9QXwMVc-c</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Pauna, H.</creator><creator>Tuomela, A.</creator><creator>Aula, M.</creator><creator>Turunen, P.</creator><creator>Pankratov, V.</creator><creator>Huttula, M.</creator><creator>Fabritius, T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20220201</creationdate><title>Toward On-Line Slag Composition Analysis: Optical Emissions from Laboratory Electric Arc</title><author>Pauna, H. ; Tuomela, A. ; Aula, M. ; Turunen, P. ; Pankratov, V. ; Huttula, M. ; Fabritius, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-38ccdf0417674a735dfc1bdc2074ec4f116b81cda3d9920e19c31ecefb72f3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Calcium fluoride</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Electric arc furnaces</topic><topic>Electric arcs</topic><topic>Emission analysis</topic><topic>Industrial applications</topic><topic>Laboratories</topic><topic>Ladle furnaces</topic><topic>Ladle metallurgy</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Optical emission spectroscopy</topic><topic>Optimization</topic><topic>Original Research Article</topic><topic>Silicon dioxide</topic><topic>Slag</topic><topic>Spectral resolution</topic><topic>Steel making</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pauna, H.</creatorcontrib><creatorcontrib>Tuomela, A.</creatorcontrib><creatorcontrib>Aula, M.</creatorcontrib><creatorcontrib>Turunen, P.</creatorcontrib><creatorcontrib>Pankratov, V.</creatorcontrib><creatorcontrib>Huttula, M.</creatorcontrib><creatorcontrib>Fabritius, T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pauna, H.</au><au>Tuomela, A.</au><au>Aula, M.</au><au>Turunen, P.</au><au>Pankratov, V.</au><au>Huttula, M.</au><au>Fabritius, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward On-Line Slag Composition Analysis: Optical Emissions from Laboratory Electric Arc</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>53</volume><issue>1</issue><spage>454</spage><epage>465</epage><pages>454-465</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>Electric arc furnaces and ladle furnaces have an important role in the future of steelmaking where CO 2 emissions have to be mitigated to an acceptable level. One way to address this goal is to optimize and improve the current practices by adjusting the chemistry and reactions with material additions or gas injections. These procedures would greatly benefit from on-line slag composition analysis. Since the electric arcs radiate throughout the melting, optical emission spectroscopy is a potential method for such analysis. In this study, optical emissions from the electric arc are measured in a laboratory environment. Dozens of atomic emission lines were correlated with Cr 2 O 3 , Fe 2 O 3 , Al 2 O 3 , SiO 2 , MnO, MgO, CaO, CaF 2 , V 2 O 5 , and Ni content of the slag together with correlation between CaF 2 and molecular optical emission bands of CaF. Optimal spectral resolution for industrial applications was deducted to be between 0.022 and 0.179 nm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-021-02382-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2022-02, Vol.53 (1), p.454-465
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_journals_2622096810
source SpringerNature Journals
subjects Aluminum oxide
Calcium fluoride
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composition
Electric arc furnaces
Electric arcs
Emission analysis
Industrial applications
Laboratories
Ladle furnaces
Ladle metallurgy
Materials Science
Metallic Materials
Nanotechnology
Optical emission spectroscopy
Optimization
Original Research Article
Silicon dioxide
Slag
Spectral resolution
Steel making
Structural Materials
Surfaces and Interfaces
Thin Films
title Toward On-Line Slag Composition Analysis: Optical Emissions from Laboratory Electric Arc
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20On-Line%20Slag%20Composition%20Analysis:%20Optical%20Emissions%20from%20Laboratory%20Electric%20Arc&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Pauna,%20H.&rft.date=2022-02-01&rft.volume=53&rft.issue=1&rft.spage=454&rft.epage=465&rft.pages=454-465&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-021-02382-5&rft_dat=%3Cproquest_cross%3E2622096810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622096810&rft_id=info:pmid/&rfr_iscdi=true