Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models

In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2022-02, Vol.53 (1), p.208-219
Hauptverfasser: Chen, Gujun, He, Shengping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 1
container_start_page 208
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 53
creator Chen, Gujun
He, Shengping
description In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt hydrodynamics in an RH degasser. This study focuses on the evaluation and comparison of different bubble expansion models available in the literature based on a coupled computational fluid dynamics–population balance model. The simulation results show that compared with the measured results, the modified Szekely–Martins model demonstrates the suitability for treating the bubble expansion behavior and thereby simulating the argon–melt hydrodynamics in an industrial RH degasser. The flow field and bubble expansion, breakup, and coalescence phenomena are then investigated.
doi_str_mv 10.1007/s11663-021-02357-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622096468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622096468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a6159c054b064d5a878b80ea59313d9c5ecca0b811b47e0889278ec542b26e633</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhiMEEqVwAVaWWAfsOHZsdjxaWqkIhMracpxJkyqNi52oZMcduCEnISVI7FiMZhb_Y_QFwTnBlwTj5MoTwjkNcUT6oSwJ-UEwIiymIZGEH_Y3TmjIOGHHwYn3a4wxl5KOgm7WZc5mXa03pUGPNoOqrFfI5mi5s-FzoT2gaWV3qKxRUwCa11nrG1fqCr20hfONLqqvj88ZOA2tR_ew0t6Du0aTPAfT7INu2zStAE3et7r2pa2HFn8aHOW68nD2u8fB63SyvJuFi6eH-d3NIjSUyCbU_c_SYBanmMcZ0yIRqcCgmaSEZtIwMEbjVBCSxglgIWSUCDAsjtKIA6d0HFwMuVtn31rwjVrb1tV9pYp4FGHJYy56VTSojLPeO8jV1pUb7TpFsNojVgNi1SNWP4gV7010MPleXK_A_UX_4_oGyG1_zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622096468</pqid></control><display><type>article</type><title>Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models</title><source>Springer Online Journals Complete</source><creator>Chen, Gujun ; He, Shengping</creator><creatorcontrib>Chen, Gujun ; He, Shengping</creatorcontrib><description>In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt hydrodynamics in an RH degasser. This study focuses on the evaluation and comparison of different bubble expansion models available in the literature based on a coupled computational fluid dynamics–population balance model. The simulation results show that compared with the measured results, the modified Szekely–Martins model demonstrates the suitability for treating the bubble expansion behavior and thereby simulating the argon–melt hydrodynamics in an industrial RH degasser. The flow field and bubble expansion, breakup, and coalescence phenomena are then investigated.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-021-02357-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Argon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coalescing ; Computational fluid dynamics ; Degassers ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Materials Science ; Metallic Materials ; Nanotechnology ; Numerical prediction ; Original Research Article ; Population balance models ; Pressure drop ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Two phase flow</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2022-02, Vol.53 (1), p.208-219</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a6159c054b064d5a878b80ea59313d9c5ecca0b811b47e0889278ec542b26e633</citedby><cites>FETCH-LOGICAL-c319t-a6159c054b064d5a878b80ea59313d9c5ecca0b811b47e0889278ec542b26e633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-021-02357-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-021-02357-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Gujun</creatorcontrib><creatorcontrib>He, Shengping</creatorcontrib><title>Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt hydrodynamics in an RH degasser. This study focuses on the evaluation and comparison of different bubble expansion models available in the literature based on a coupled computational fluid dynamics–population balance model. The simulation results show that compared with the measured results, the modified Szekely–Martins model demonstrates the suitability for treating the bubble expansion behavior and thereby simulating the argon–melt hydrodynamics in an industrial RH degasser. The flow field and bubble expansion, breakup, and coalescence phenomena are then investigated.</description><subject>Argon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coalescing</subject><subject>Computational fluid dynamics</subject><subject>Degassers</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Numerical prediction</subject><subject>Original Research Article</subject><subject>Population balance models</subject><subject>Pressure drop</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Two phase flow</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtOwzAQhiMEEqVwAVaWWAfsOHZsdjxaWqkIhMracpxJkyqNi52oZMcduCEnISVI7FiMZhb_Y_QFwTnBlwTj5MoTwjkNcUT6oSwJ-UEwIiymIZGEH_Y3TmjIOGHHwYn3a4wxl5KOgm7WZc5mXa03pUGPNoOqrFfI5mi5s-FzoT2gaWV3qKxRUwCa11nrG1fqCr20hfONLqqvj88ZOA2tR_ew0t6Du0aTPAfT7INu2zStAE3et7r2pa2HFn8aHOW68nD2u8fB63SyvJuFi6eH-d3NIjSUyCbU_c_SYBanmMcZ0yIRqcCgmaSEZtIwMEbjVBCSxglgIWSUCDAsjtKIA6d0HFwMuVtn31rwjVrb1tV9pYp4FGHJYy56VTSojLPeO8jV1pUb7TpFsNojVgNi1SNWP4gV7010MPleXK_A_UX_4_oGyG1_zw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Gujun</creator><creator>He, Shengping</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20220201</creationdate><title>Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models</title><author>Chen, Gujun ; He, Shengping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a6159c054b064d5a878b80ea59313d9c5ecca0b811b47e0889278ec542b26e633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Argon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coalescing</topic><topic>Computational fluid dynamics</topic><topic>Degassers</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Numerical prediction</topic><topic>Original Research Article</topic><topic>Population balance models</topic><topic>Pressure drop</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gujun</creatorcontrib><creatorcontrib>He, Shengping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gujun</au><au>He, Shengping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>53</volume><issue>1</issue><spage>208</spage><epage>219</epage><pages>208-219</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt hydrodynamics in an RH degasser. This study focuses on the evaluation and comparison of different bubble expansion models available in the literature based on a coupled computational fluid dynamics–population balance model. The simulation results show that compared with the measured results, the modified Szekely–Martins model demonstrates the suitability for treating the bubble expansion behavior and thereby simulating the argon–melt hydrodynamics in an industrial RH degasser. The flow field and bubble expansion, breakup, and coalescence phenomena are then investigated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-021-02357-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2022-02, Vol.53 (1), p.208-219
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_journals_2622096468
source Springer Online Journals Complete
subjects Argon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coalescing
Computational fluid dynamics
Degassers
Fluid flow
Fluid mechanics
Hydrodynamics
Materials Science
Metallic Materials
Nanotechnology
Numerical prediction
Original Research Article
Population balance models
Pressure drop
Structural Materials
Surfaces and Interfaces
Thin Films
Two phase flow
title Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20Modeling%20of%20Two-Phase%20Flow%20in%20the%20Industrial%20Ruhrstahl%E2%80%93Heraeus%20Degasser:%20Effect%20of%20Bubble%20Expansion%20Models&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Chen,%20Gujun&rft.date=2022-02-01&rft.volume=53&rft.issue=1&rft.spage=208&rft.epage=219&rft.pages=208-219&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-021-02357-6&rft_dat=%3Cproquest_cross%3E2622096468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622096468&rft_id=info:pmid/&rfr_iscdi=true