Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models
In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt h...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2022-02, Vol.53 (1), p.208-219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 219 |
---|---|
container_issue | 1 |
container_start_page | 208 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 53 |
creator | Chen, Gujun He, Shengping |
description | In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt hydrodynamics in an RH degasser. This study focuses on the evaluation and comparison of different bubble expansion models available in the literature based on a coupled computational fluid dynamics–population balance model. The simulation results show that compared with the measured results, the modified Szekely–Martins model demonstrates the suitability for treating the bubble expansion behavior and thereby simulating the argon–melt hydrodynamics in an industrial RH degasser. The flow field and bubble expansion, breakup, and coalescence phenomena are then investigated. |
doi_str_mv | 10.1007/s11663-021-02357-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622096468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622096468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a6159c054b064d5a878b80ea59313d9c5ecca0b811b47e0889278ec542b26e633</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhiMEEqVwAVaWWAfsOHZsdjxaWqkIhMracpxJkyqNi52oZMcduCEnISVI7FiMZhb_Y_QFwTnBlwTj5MoTwjkNcUT6oSwJ-UEwIiymIZGEH_Y3TmjIOGHHwYn3a4wxl5KOgm7WZc5mXa03pUGPNoOqrFfI5mi5s-FzoT2gaWV3qKxRUwCa11nrG1fqCr20hfONLqqvj88ZOA2tR_ew0t6Du0aTPAfT7INu2zStAE3et7r2pa2HFn8aHOW68nD2u8fB63SyvJuFi6eH-d3NIjSUyCbU_c_SYBanmMcZ0yIRqcCgmaSEZtIwMEbjVBCSxglgIWSUCDAsjtKIA6d0HFwMuVtn31rwjVrb1tV9pYp4FGHJYy56VTSojLPeO8jV1pUb7TpFsNojVgNi1SNWP4gV7010MPleXK_A_UX_4_oGyG1_zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622096468</pqid></control><display><type>article</type><title>Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models</title><source>Springer Online Journals Complete</source><creator>Chen, Gujun ; He, Shengping</creator><creatorcontrib>Chen, Gujun ; He, Shengping</creatorcontrib><description>In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt hydrodynamics in an RH degasser. This study focuses on the evaluation and comparison of different bubble expansion models available in the literature based on a coupled computational fluid dynamics–population balance model. The simulation results show that compared with the measured results, the modified Szekely–Martins model demonstrates the suitability for treating the bubble expansion behavior and thereby simulating the argon–melt hydrodynamics in an industrial RH degasser. The flow field and bubble expansion, breakup, and coalescence phenomena are then investigated.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-021-02357-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Argon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coalescing ; Computational fluid dynamics ; Degassers ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Materials Science ; Metallic Materials ; Nanotechnology ; Numerical prediction ; Original Research Article ; Population balance models ; Pressure drop ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Two phase flow</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2022-02, Vol.53 (1), p.208-219</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2021</rights><rights>The Minerals, Metals & Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a6159c054b064d5a878b80ea59313d9c5ecca0b811b47e0889278ec542b26e633</citedby><cites>FETCH-LOGICAL-c319t-a6159c054b064d5a878b80ea59313d9c5ecca0b811b47e0889278ec542b26e633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-021-02357-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-021-02357-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Gujun</creatorcontrib><creatorcontrib>He, Shengping</creatorcontrib><title>Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt hydrodynamics in an RH degasser. This study focuses on the evaluation and comparison of different bubble expansion models available in the literature based on a coupled computational fluid dynamics–population balance model. The simulation results show that compared with the measured results, the modified Szekely–Martins model demonstrates the suitability for treating the bubble expansion behavior and thereby simulating the argon–melt hydrodynamics in an industrial RH degasser. The flow field and bubble expansion, breakup, and coalescence phenomena are then investigated.</description><subject>Argon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coalescing</subject><subject>Computational fluid dynamics</subject><subject>Degassers</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Numerical prediction</subject><subject>Original Research Article</subject><subject>Population balance models</subject><subject>Pressure drop</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Two phase flow</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtOwzAQhiMEEqVwAVaWWAfsOHZsdjxaWqkIhMracpxJkyqNi52oZMcduCEnISVI7FiMZhb_Y_QFwTnBlwTj5MoTwjkNcUT6oSwJ-UEwIiymIZGEH_Y3TmjIOGHHwYn3a4wxl5KOgm7WZc5mXa03pUGPNoOqrFfI5mi5s-FzoT2gaWV3qKxRUwCa11nrG1fqCr20hfONLqqvj88ZOA2tR_ew0t6Du0aTPAfT7INu2zStAE3et7r2pa2HFn8aHOW68nD2u8fB63SyvJuFi6eH-d3NIjSUyCbU_c_SYBanmMcZ0yIRqcCgmaSEZtIwMEbjVBCSxglgIWSUCDAsjtKIA6d0HFwMuVtn31rwjVrb1tV9pYp4FGHJYy56VTSojLPeO8jV1pUb7TpFsNojVgNi1SNWP4gV7010MPleXK_A_UX_4_oGyG1_zw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Gujun</creator><creator>He, Shengping</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20220201</creationdate><title>Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models</title><author>Chen, Gujun ; He, Shengping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a6159c054b064d5a878b80ea59313d9c5ecca0b811b47e0889278ec542b26e633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Argon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coalescing</topic><topic>Computational fluid dynamics</topic><topic>Degassers</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Numerical prediction</topic><topic>Original Research Article</topic><topic>Population balance models</topic><topic>Pressure drop</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gujun</creatorcontrib><creatorcontrib>He, Shengping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Gujun</au><au>He, Shengping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>53</volume><issue>1</issue><spage>208</spage><epage>219</epage><pages>208-219</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>In an industrial Ruhrstahl–Heraeus (RH) degasser, gas bubbles can expand rapidly due to heating by the melt as well as to the significant pressure drop when they rise in the melt. A suitable model for the bubble expansion is, therefore, essential for the accurate numerical prediction of argon–melt hydrodynamics in an RH degasser. This study focuses on the evaluation and comparison of different bubble expansion models available in the literature based on a coupled computational fluid dynamics–population balance model. The simulation results show that compared with the measured results, the modified Szekely–Martins model demonstrates the suitability for treating the bubble expansion behavior and thereby simulating the argon–melt hydrodynamics in an industrial RH degasser. The flow field and bubble expansion, breakup, and coalescence phenomena are then investigated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-021-02357-6</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2022-02, Vol.53 (1), p.208-219 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_journals_2622096468 |
source | Springer Online Journals Complete |
subjects | Argon Characterization and Evaluation of Materials Chemistry and Materials Science Coalescing Computational fluid dynamics Degassers Fluid flow Fluid mechanics Hydrodynamics Materials Science Metallic Materials Nanotechnology Numerical prediction Original Research Article Population balance models Pressure drop Structural Materials Surfaces and Interfaces Thin Films Two phase flow |
title | Hydrodynamic Modeling of Two-Phase Flow in the Industrial Ruhrstahl–Heraeus Degasser: Effect of Bubble Expansion Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20Modeling%20of%20Two-Phase%20Flow%20in%20the%20Industrial%20Ruhrstahl%E2%80%93Heraeus%20Degasser:%20Effect%20of%20Bubble%20Expansion%20Models&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Chen,%20Gujun&rft.date=2022-02-01&rft.volume=53&rft.issue=1&rft.spage=208&rft.epage=219&rft.pages=208-219&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-021-02357-6&rft_dat=%3Cproquest_cross%3E2622096468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622096468&rft_id=info:pmid/&rfr_iscdi=true |