An Elastic Collision Seeker Optimization Algorithm for Optimization Constrained Engineering Problems

To improve the seeker optimization algorithm (SOA), an elastic collision seeker optimization algorithm (ECSOA) was proposed. The ECSOA evolves some individuals in three situations: completely elastic collision, completely inelastic collision, and non-completely elastic collision. These strategies en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-01, Vol.2022, p.1-28
Hauptverfasser: Duan, Shaomi, Luo, Huilong, Liu, Haipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Duan, Shaomi
Luo, Huilong
Liu, Haipeng
description To improve the seeker optimization algorithm (SOA), an elastic collision seeker optimization algorithm (ECSOA) was proposed. The ECSOA evolves some individuals in three situations: completely elastic collision, completely inelastic collision, and non-completely elastic collision. These strategies enhance the individuals’ diversity and avert falling into the local optimum. The ECSOA is compared with the particle swarm optimization (PSO), the simulated annealing and genetic algorithm (SA_GA), the gravitational search algorithm (GSA), the sine cosine algorithm (SCA), the multiverse optimizer (MVO), and the seeker optimization algorithm (SOA); then, fifteen benchmark functions, four PID control parameter models, and six constrained engineering optimization problems were selected for the experiment. According to the experimental results, the ECSOA can be used in the benchmark functions, the PID control parameter optimization, and the optimization constrained engineering problems. The optimization ability and robustness of ECSOA are better.
doi_str_mv 10.1155/2022/1344667
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2622087455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622087455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-2febe11c4c742de1b38748869d13c7115b59818dbd28953ffa80b280ae53ebbc3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs7f8CASx2bm8dMuixDfYBQQQV3Q5LJtKkzSU1SRH-9U9qVC1fncu_HuZyD0CXgWwDOJwQTMgHKWFGUR2gEvKA5B1YeDzMmLAdC30_RWYxrjAlwECPUzFw272RMVmeV7zobrXfZizEfJmSLTbK9_ZFpt5t1Sx9sWvVZ6_-cKu9iCtI602RztxzUBOuW2XPwqjN9PEcnreyiuTjoGL3dzV-rh_xpcf9YzZ5yTWmZctIaZQA00yUjjQFFRcmEKKYNUF0OCRWfChCNaoiYctq2UmBFBJaGU6OUpmN0tffdBP-5NTHVa78NbnhZk4IQPNhxPlA3e0oHH2Mwbb0JtpfhuwZc73qsdz3Whx4H_HqPr6xr5Jf9n_4F3UhzQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622087455</pqid></control><display><type>article</type><title>An Elastic Collision Seeker Optimization Algorithm for Optimization Constrained Engineering Problems</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Duan, Shaomi ; Luo, Huilong ; Liu, Haipeng</creator><contributor>Prabowo, Aditya Rio ; Aditya Rio Prabowo</contributor><creatorcontrib>Duan, Shaomi ; Luo, Huilong ; Liu, Haipeng ; Prabowo, Aditya Rio ; Aditya Rio Prabowo</creatorcontrib><description>To improve the seeker optimization algorithm (SOA), an elastic collision seeker optimization algorithm (ECSOA) was proposed. The ECSOA evolves some individuals in three situations: completely elastic collision, completely inelastic collision, and non-completely elastic collision. These strategies enhance the individuals’ diversity and avert falling into the local optimum. The ECSOA is compared with the particle swarm optimization (PSO), the simulated annealing and genetic algorithm (SA_GA), the gravitational search algorithm (GSA), the sine cosine algorithm (SCA), the multiverse optimizer (MVO), and the seeker optimization algorithm (SOA); then, fifteen benchmark functions, four PID control parameter models, and six constrained engineering optimization problems were selected for the experiment. According to the experimental results, the ECSOA can be used in the benchmark functions, the PID control parameter optimization, and the optimization constrained engineering problems. The optimization ability and robustness of ECSOA are better.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/1344667</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Approximation ; Benchmarks ; Design optimization ; Elastic scattering ; Engineering ; Genetic algorithms ; Inelastic collisions ; Mutation ; Normal distribution ; Optimization algorithms ; Parameters ; Particle swarm optimization ; Proportional integral derivative ; Search algorithms ; Simulated annealing ; Traveling salesman problem ; Trigonometric functions</subject><ispartof>Mathematical problems in engineering, 2022-01, Vol.2022, p.1-28</ispartof><rights>Copyright © 2022 Shaomi Duan et al.</rights><rights>Copyright © 2022 Shaomi Duan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-2febe11c4c742de1b38748869d13c7115b59818dbd28953ffa80b280ae53ebbc3</citedby><cites>FETCH-LOGICAL-c337t-2febe11c4c742de1b38748869d13c7115b59818dbd28953ffa80b280ae53ebbc3</cites><orcidid>0000-0002-1260-2696 ; 0000-0001-7478-773X ; 0000-0002-7159-1480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Prabowo, Aditya Rio</contributor><contributor>Aditya Rio Prabowo</contributor><creatorcontrib>Duan, Shaomi</creatorcontrib><creatorcontrib>Luo, Huilong</creatorcontrib><creatorcontrib>Liu, Haipeng</creatorcontrib><title>An Elastic Collision Seeker Optimization Algorithm for Optimization Constrained Engineering Problems</title><title>Mathematical problems in engineering</title><description>To improve the seeker optimization algorithm (SOA), an elastic collision seeker optimization algorithm (ECSOA) was proposed. The ECSOA evolves some individuals in three situations: completely elastic collision, completely inelastic collision, and non-completely elastic collision. These strategies enhance the individuals’ diversity and avert falling into the local optimum. The ECSOA is compared with the particle swarm optimization (PSO), the simulated annealing and genetic algorithm (SA_GA), the gravitational search algorithm (GSA), the sine cosine algorithm (SCA), the multiverse optimizer (MVO), and the seeker optimization algorithm (SOA); then, fifteen benchmark functions, four PID control parameter models, and six constrained engineering optimization problems were selected for the experiment. According to the experimental results, the ECSOA can be used in the benchmark functions, the PID control parameter optimization, and the optimization constrained engineering problems. The optimization ability and robustness of ECSOA are better.</description><subject>Approximation</subject><subject>Benchmarks</subject><subject>Design optimization</subject><subject>Elastic scattering</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Inelastic collisions</subject><subject>Mutation</subject><subject>Normal distribution</subject><subject>Optimization algorithms</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Proportional integral derivative</subject><subject>Search algorithms</subject><subject>Simulated annealing</subject><subject>Traveling salesman problem</subject><subject>Trigonometric functions</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKs7f8CASx2bm8dMuixDfYBQQQV3Q5LJtKkzSU1SRH-9U9qVC1fncu_HuZyD0CXgWwDOJwQTMgHKWFGUR2gEvKA5B1YeDzMmLAdC30_RWYxrjAlwECPUzFw272RMVmeV7zobrXfZizEfJmSLTbK9_ZFpt5t1Sx9sWvVZ6_-cKu9iCtI602RztxzUBOuW2XPwqjN9PEcnreyiuTjoGL3dzV-rh_xpcf9YzZ5yTWmZctIaZQA00yUjjQFFRcmEKKYNUF0OCRWfChCNaoiYctq2UmBFBJaGU6OUpmN0tffdBP-5NTHVa78NbnhZk4IQPNhxPlA3e0oHH2Mwbb0JtpfhuwZc73qsdz3Whx4H_HqPr6xr5Jf9n_4F3UhzQA</recordid><startdate>20220110</startdate><enddate>20220110</enddate><creator>Duan, Shaomi</creator><creator>Luo, Huilong</creator><creator>Liu, Haipeng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1260-2696</orcidid><orcidid>https://orcid.org/0000-0001-7478-773X</orcidid><orcidid>https://orcid.org/0000-0002-7159-1480</orcidid></search><sort><creationdate>20220110</creationdate><title>An Elastic Collision Seeker Optimization Algorithm for Optimization Constrained Engineering Problems</title><author>Duan, Shaomi ; Luo, Huilong ; Liu, Haipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-2febe11c4c742de1b38748869d13c7115b59818dbd28953ffa80b280ae53ebbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Benchmarks</topic><topic>Design optimization</topic><topic>Elastic scattering</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Inelastic collisions</topic><topic>Mutation</topic><topic>Normal distribution</topic><topic>Optimization algorithms</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Proportional integral derivative</topic><topic>Search algorithms</topic><topic>Simulated annealing</topic><topic>Traveling salesman problem</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Shaomi</creatorcontrib><creatorcontrib>Luo, Huilong</creatorcontrib><creatorcontrib>Liu, Haipeng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Shaomi</au><au>Luo, Huilong</au><au>Liu, Haipeng</au><au>Prabowo, Aditya Rio</au><au>Aditya Rio Prabowo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Elastic Collision Seeker Optimization Algorithm for Optimization Constrained Engineering Problems</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-01-10</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>To improve the seeker optimization algorithm (SOA), an elastic collision seeker optimization algorithm (ECSOA) was proposed. The ECSOA evolves some individuals in three situations: completely elastic collision, completely inelastic collision, and non-completely elastic collision. These strategies enhance the individuals’ diversity and avert falling into the local optimum. The ECSOA is compared with the particle swarm optimization (PSO), the simulated annealing and genetic algorithm (SA_GA), the gravitational search algorithm (GSA), the sine cosine algorithm (SCA), the multiverse optimizer (MVO), and the seeker optimization algorithm (SOA); then, fifteen benchmark functions, four PID control parameter models, and six constrained engineering optimization problems were selected for the experiment. According to the experimental results, the ECSOA can be used in the benchmark functions, the PID control parameter optimization, and the optimization constrained engineering problems. The optimization ability and robustness of ECSOA are better.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1344667</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-1260-2696</orcidid><orcidid>https://orcid.org/0000-0001-7478-773X</orcidid><orcidid>https://orcid.org/0000-0002-7159-1480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022-01, Vol.2022, p.1-28
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2622087455
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Approximation
Benchmarks
Design optimization
Elastic scattering
Engineering
Genetic algorithms
Inelastic collisions
Mutation
Normal distribution
Optimization algorithms
Parameters
Particle swarm optimization
Proportional integral derivative
Search algorithms
Simulated annealing
Traveling salesman problem
Trigonometric functions
title An Elastic Collision Seeker Optimization Algorithm for Optimization Constrained Engineering Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Elastic%20Collision%20Seeker%20Optimization%20Algorithm%20for%20Optimization%20Constrained%20Engineering%20Problems&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Duan,%20Shaomi&rft.date=2022-01-10&rft.volume=2022&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/1344667&rft_dat=%3Cproquest_cross%3E2622087455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622087455&rft_id=info:pmid/&rfr_iscdi=true