Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)
Ceria-zirconia solid solution (Ce 0.5 Zr 0.5 O 2 )-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO 2 reforming of CH 4 (DRM). Oxygen storage capacity (OSC) is measured by O 2 pulse injection at the reaction temperature. The solid sol...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2022, Vol.57 (4), p.2839-2856 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2856 |
---|---|
container_issue | 4 |
container_start_page | 2839 |
container_title | Journal of materials science |
container_volume | 57 |
creator | Prasad, Manohar Ray, Koustuv Sinhamahapatra, Apurba Sengupta, Siddhartha |
description | Ceria-zirconia solid solution (Ce
0.5
Zr
0.5
O
2
)-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO
2
reforming of CH
4
(DRM). Oxygen storage capacity (OSC) is measured by O
2
pulse injection at the reaction temperature. The solid solution is formed upon incorporating Zr
4+
into ceria, subsequently accelerating oxygen mobility from lattice (bulk) to the surface, enhancing %Ce
3+
due to increased oxygen vacancies, and thus improving OSC, reducibility, surface basicity, and Ni dispersion compared to pure CeO
2
and ZrO
2
. The solid solution exhibits better conversions of CH
4
and CO
2
, a higher H
2
/CO ratio, and low carbon deposition compared to its pure counterpart. The density functional theory (DFT) studies unveil oxygen vacancy formation energy (OVFE) as a descriptor that decreased for Ce
0.5
Zr
0.
5
O
2
due to the incorporation of Zr
4+
and enhanced mobility of O anions, OSC, and reducibility. |
doi_str_mv | 10.1007/s10853-021-06720-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621933755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621933755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f60a39ac339dc86014d46a9dd70b9bb6d9b7b8f23beb50fc460f7924b49d495f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EEkPLC7CyxIYuTK9_kozZoailSFVn0cKCjeXYTpRqxg62p5q8Gk9Xh4DYsbpXut85R_ZB6B2FjxSguUwUthUnwCiBumFAqhdoQ6uGE7EF_hJtABgjTNT0NXqT0iMAVA2jG_Trbrxs3elHpOS0Y9jorPdzyniKbtLRWfw0ahy8Iym7CZtAysGM05h1HoPHfYi4LbroynYY_YBDj9sbgXMoFsEejcNp9oNOn3AMe7ecw2kenMcph6gHVyInbcY84w-7-_YCa2__Ek_aaG_mJeSwxjnv4rCQ36-vLs7Rq17vk3v7Z56hb9dXD-0Nud19-dp-viWGU5lJX4PmUhvOpTXbGqiwotbS2gY62XW1lV3TbXvGO9dV0BtRQ99IJjohrZBVz8_Q-9W3POjn0aWsHsMx-hKpWM2o5LypqkKxlTIxpFT-Q01xPOg4Kwpq6UitHanSkfrdkVpEfBWlAvvBxX_W_1E9A5ZOlcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621933755</pqid></control><display><type>article</type><title>Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)</title><source>SpringerNature Journals</source><creator>Prasad, Manohar ; Ray, Koustuv ; Sinhamahapatra, Apurba ; Sengupta, Siddhartha</creator><creatorcontrib>Prasad, Manohar ; Ray, Koustuv ; Sinhamahapatra, Apurba ; Sengupta, Siddhartha</creatorcontrib><description>Ceria-zirconia solid solution (Ce
0.5
Zr
0.5
O
2
)-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO
2
reforming of CH
4
(DRM). Oxygen storage capacity (OSC) is measured by O
2
pulse injection at the reaction temperature. The solid solution is formed upon incorporating Zr
4+
into ceria, subsequently accelerating oxygen mobility from lattice (bulk) to the surface, enhancing %Ce
3+
due to increased oxygen vacancies, and thus improving OSC, reducibility, surface basicity, and Ni dispersion compared to pure CeO
2
and ZrO
2
. The solid solution exhibits better conversions of CH
4
and CO
2
, a higher H
2
/CO ratio, and low carbon deposition compared to its pure counterpart. The density functional theory (DFT) studies unveil oxygen vacancy formation energy (OVFE) as a descriptor that decreased for Ce
0.5
Zr
0.
5
O
2
due to the incorporation of Zr
4+
and enhanced mobility of O anions, OSC, and reducibility.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06720-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Basicity ; Carbon dioxide ; Catalysts ; Cerium oxides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coprecipitation ; Crystallography and Scattering Methods ; Density functional theory ; Energy Materials ; Energy of formation ; Free energy ; Heat of formation ; Lattice vacancies ; Materials Science ; Methane ; Oxygen ; Polymer Sciences ; Reforming ; Solid Mechanics ; Solid solutions ; Storage capacity ; Synthesis gas ; Zirconium dioxide</subject><ispartof>Journal of materials science, 2022, Vol.57 (4), p.2839-2856</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f60a39ac339dc86014d46a9dd70b9bb6d9b7b8f23beb50fc460f7924b49d495f3</citedby><cites>FETCH-LOGICAL-c319t-f60a39ac339dc86014d46a9dd70b9bb6d9b7b8f23beb50fc460f7924b49d495f3</cites><orcidid>0000-0002-9003-3222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06720-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06720-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Prasad, Manohar</creatorcontrib><creatorcontrib>Ray, Koustuv</creatorcontrib><creatorcontrib>Sinhamahapatra, Apurba</creatorcontrib><creatorcontrib>Sengupta, Siddhartha</creatorcontrib><title>Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Ceria-zirconia solid solution (Ce
0.5
Zr
0.5
O
2
)-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO
2
reforming of CH
4
(DRM). Oxygen storage capacity (OSC) is measured by O
2
pulse injection at the reaction temperature. The solid solution is formed upon incorporating Zr
4+
into ceria, subsequently accelerating oxygen mobility from lattice (bulk) to the surface, enhancing %Ce
3+
due to increased oxygen vacancies, and thus improving OSC, reducibility, surface basicity, and Ni dispersion compared to pure CeO
2
and ZrO
2
. The solid solution exhibits better conversions of CH
4
and CO
2
, a higher H
2
/CO ratio, and low carbon deposition compared to its pure counterpart. The density functional theory (DFT) studies unveil oxygen vacancy formation energy (OVFE) as a descriptor that decreased for Ce
0.5
Zr
0.
5
O
2
due to the incorporation of Zr
4+
and enhanced mobility of O anions, OSC, and reducibility.</description><subject>Basicity</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Cerium oxides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coprecipitation</subject><subject>Crystallography and Scattering Methods</subject><subject>Density functional theory</subject><subject>Energy Materials</subject><subject>Energy of formation</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Lattice vacancies</subject><subject>Materials Science</subject><subject>Methane</subject><subject>Oxygen</subject><subject>Polymer Sciences</subject><subject>Reforming</subject><subject>Solid Mechanics</subject><subject>Solid solutions</subject><subject>Storage capacity</subject><subject>Synthesis gas</subject><subject>Zirconium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1u1DAUhS0EEkPLC7CyxIYuTK9_kozZoailSFVn0cKCjeXYTpRqxg62p5q8Gk9Xh4DYsbpXut85R_ZB6B2FjxSguUwUthUnwCiBumFAqhdoQ6uGE7EF_hJtABgjTNT0NXqT0iMAVA2jG_Trbrxs3elHpOS0Y9jorPdzyniKbtLRWfw0ahy8Iym7CZtAysGM05h1HoPHfYi4LbroynYY_YBDj9sbgXMoFsEejcNp9oNOn3AMe7ecw2kenMcph6gHVyInbcY84w-7-_YCa2__Ek_aaG_mJeSwxjnv4rCQ36-vLs7Rq17vk3v7Z56hb9dXD-0Nud19-dp-viWGU5lJX4PmUhvOpTXbGqiwotbS2gY62XW1lV3TbXvGO9dV0BtRQ99IJjohrZBVz8_Q-9W3POjn0aWsHsMx-hKpWM2o5LypqkKxlTIxpFT-Q01xPOg4Kwpq6UitHanSkfrdkVpEfBWlAvvBxX_W_1E9A5ZOlcA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Prasad, Manohar</creator><creator>Ray, Koustuv</creator><creator>Sinhamahapatra, Apurba</creator><creator>Sengupta, Siddhartha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9003-3222</orcidid></search><sort><creationdate>2022</creationdate><title>Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)</title><author>Prasad, Manohar ; Ray, Koustuv ; Sinhamahapatra, Apurba ; Sengupta, Siddhartha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f60a39ac339dc86014d46a9dd70b9bb6d9b7b8f23beb50fc460f7924b49d495f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basicity</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Cerium oxides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coprecipitation</topic><topic>Crystallography and Scattering Methods</topic><topic>Density functional theory</topic><topic>Energy Materials</topic><topic>Energy of formation</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Lattice vacancies</topic><topic>Materials Science</topic><topic>Methane</topic><topic>Oxygen</topic><topic>Polymer Sciences</topic><topic>Reforming</topic><topic>Solid Mechanics</topic><topic>Solid solutions</topic><topic>Storage capacity</topic><topic>Synthesis gas</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, Manohar</creatorcontrib><creatorcontrib>Ray, Koustuv</creatorcontrib><creatorcontrib>Sinhamahapatra, Apurba</creatorcontrib><creatorcontrib>Sengupta, Siddhartha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, Manohar</au><au>Ray, Koustuv</au><au>Sinhamahapatra, Apurba</au><au>Sengupta, Siddhartha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022</date><risdate>2022</risdate><volume>57</volume><issue>4</issue><spage>2839</spage><epage>2856</epage><pages>2839-2856</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Ceria-zirconia solid solution (Ce
0.5
Zr
0.5
O
2
)-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO
2
reforming of CH
4
(DRM). Oxygen storage capacity (OSC) is measured by O
2
pulse injection at the reaction temperature. The solid solution is formed upon incorporating Zr
4+
into ceria, subsequently accelerating oxygen mobility from lattice (bulk) to the surface, enhancing %Ce
3+
due to increased oxygen vacancies, and thus improving OSC, reducibility, surface basicity, and Ni dispersion compared to pure CeO
2
and ZrO
2
. The solid solution exhibits better conversions of CH
4
and CO
2
, a higher H
2
/CO ratio, and low carbon deposition compared to its pure counterpart. The density functional theory (DFT) studies unveil oxygen vacancy formation energy (OVFE) as a descriptor that decreased for Ce
0.5
Zr
0.
5
O
2
due to the incorporation of Zr
4+
and enhanced mobility of O anions, OSC, and reducibility.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06720-5</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9003-3222</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2022, Vol.57 (4), p.2839-2856 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2621933755 |
source | SpringerNature Journals |
subjects | Basicity Carbon dioxide Catalysts Cerium oxides Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Coprecipitation Crystallography and Scattering Methods Density functional theory Energy Materials Energy of formation Free energy Heat of formation Lattice vacancies Materials Science Methane Oxygen Polymer Sciences Reforming Solid Mechanics Solid solutions Storage capacity Synthesis gas Zirconium dioxide |
title | Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ni/CexZr1-xO2%20catalyst%20prepared%20via%20one-step%20co-precipitation%20for%20CO2%20reforming%20of%20CH4%20to%20produce%20syngas:%20role%20of%20oxygen%20storage%20capacity%20(OSC)%20and%20oxygen%20vacancy%20formation%20energy%20(OVFE)&rft.jtitle=Journal%20of%20materials%20science&rft.au=Prasad,%20Manohar&rft.date=2022&rft.volume=57&rft.issue=4&rft.spage=2839&rft.epage=2856&rft.pages=2839-2856&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06720-5&rft_dat=%3Cproquest_cross%3E2621933755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621933755&rft_id=info:pmid/&rfr_iscdi=true |