Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)

Ceria-zirconia solid solution (Ce 0.5 Zr 0.5 O 2 )-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO 2 reforming of CH 4 (DRM). Oxygen storage capacity (OSC) is measured by O 2 pulse injection at the reaction temperature. The solid sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2022, Vol.57 (4), p.2839-2856
Hauptverfasser: Prasad, Manohar, Ray, Koustuv, Sinhamahapatra, Apurba, Sengupta, Siddhartha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2856
container_issue 4
container_start_page 2839
container_title Journal of materials science
container_volume 57
creator Prasad, Manohar
Ray, Koustuv
Sinhamahapatra, Apurba
Sengupta, Siddhartha
description Ceria-zirconia solid solution (Ce 0.5 Zr 0.5 O 2 )-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO 2 reforming of CH 4 (DRM). Oxygen storage capacity (OSC) is measured by O 2 pulse injection at the reaction temperature. The solid solution is formed upon incorporating Zr 4+ into ceria, subsequently accelerating oxygen mobility from lattice (bulk) to the surface, enhancing %Ce 3+ due to increased oxygen vacancies, and thus improving OSC, reducibility, surface basicity, and Ni dispersion compared to pure CeO 2 and ZrO 2 . The solid solution exhibits better conversions of CH 4 and CO 2 , a higher H 2 /CO ratio, and low carbon deposition compared to its pure counterpart. The density functional theory (DFT) studies unveil oxygen vacancy formation energy (OVFE) as a descriptor that decreased for Ce 0.5 Zr 0. 5 O 2 due to the incorporation of Zr 4+ and enhanced mobility of O anions, OSC, and reducibility.
doi_str_mv 10.1007/s10853-021-06720-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621933755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621933755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f60a39ac339dc86014d46a9dd70b9bb6d9b7b8f23beb50fc460f7924b49d495f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EEkPLC7CyxIYuTK9_kozZoailSFVn0cKCjeXYTpRqxg62p5q8Gk9Xh4DYsbpXut85R_ZB6B2FjxSguUwUthUnwCiBumFAqhdoQ6uGE7EF_hJtABgjTNT0NXqT0iMAVA2jG_Trbrxs3elHpOS0Y9jorPdzyniKbtLRWfw0ahy8Iym7CZtAysGM05h1HoPHfYi4LbroynYY_YBDj9sbgXMoFsEejcNp9oNOn3AMe7ecw2kenMcph6gHVyInbcY84w-7-_YCa2__Ek_aaG_mJeSwxjnv4rCQ36-vLs7Rq17vk3v7Z56hb9dXD-0Nud19-dp-viWGU5lJX4PmUhvOpTXbGqiwotbS2gY62XW1lV3TbXvGO9dV0BtRQ99IJjohrZBVz8_Q-9W3POjn0aWsHsMx-hKpWM2o5LypqkKxlTIxpFT-Q01xPOg4Kwpq6UitHanSkfrdkVpEfBWlAvvBxX_W_1E9A5ZOlcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621933755</pqid></control><display><type>article</type><title>Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)</title><source>SpringerNature Journals</source><creator>Prasad, Manohar ; Ray, Koustuv ; Sinhamahapatra, Apurba ; Sengupta, Siddhartha</creator><creatorcontrib>Prasad, Manohar ; Ray, Koustuv ; Sinhamahapatra, Apurba ; Sengupta, Siddhartha</creatorcontrib><description>Ceria-zirconia solid solution (Ce 0.5 Zr 0.5 O 2 )-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO 2 reforming of CH 4 (DRM). Oxygen storage capacity (OSC) is measured by O 2 pulse injection at the reaction temperature. The solid solution is formed upon incorporating Zr 4+ into ceria, subsequently accelerating oxygen mobility from lattice (bulk) to the surface, enhancing %Ce 3+ due to increased oxygen vacancies, and thus improving OSC, reducibility, surface basicity, and Ni dispersion compared to pure CeO 2 and ZrO 2 . The solid solution exhibits better conversions of CH 4 and CO 2 , a higher H 2 /CO ratio, and low carbon deposition compared to its pure counterpart. The density functional theory (DFT) studies unveil oxygen vacancy formation energy (OVFE) as a descriptor that decreased for Ce 0.5 Zr 0. 5 O 2 due to the incorporation of Zr 4+ and enhanced mobility of O anions, OSC, and reducibility.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06720-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Basicity ; Carbon dioxide ; Catalysts ; Cerium oxides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coprecipitation ; Crystallography and Scattering Methods ; Density functional theory ; Energy Materials ; Energy of formation ; Free energy ; Heat of formation ; Lattice vacancies ; Materials Science ; Methane ; Oxygen ; Polymer Sciences ; Reforming ; Solid Mechanics ; Solid solutions ; Storage capacity ; Synthesis gas ; Zirconium dioxide</subject><ispartof>Journal of materials science, 2022, Vol.57 (4), p.2839-2856</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f60a39ac339dc86014d46a9dd70b9bb6d9b7b8f23beb50fc460f7924b49d495f3</citedby><cites>FETCH-LOGICAL-c319t-f60a39ac339dc86014d46a9dd70b9bb6d9b7b8f23beb50fc460f7924b49d495f3</cites><orcidid>0000-0002-9003-3222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06720-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06720-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Prasad, Manohar</creatorcontrib><creatorcontrib>Ray, Koustuv</creatorcontrib><creatorcontrib>Sinhamahapatra, Apurba</creatorcontrib><creatorcontrib>Sengupta, Siddhartha</creatorcontrib><title>Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Ceria-zirconia solid solution (Ce 0.5 Zr 0.5 O 2 )-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO 2 reforming of CH 4 (DRM). Oxygen storage capacity (OSC) is measured by O 2 pulse injection at the reaction temperature. The solid solution is formed upon incorporating Zr 4+ into ceria, subsequently accelerating oxygen mobility from lattice (bulk) to the surface, enhancing %Ce 3+ due to increased oxygen vacancies, and thus improving OSC, reducibility, surface basicity, and Ni dispersion compared to pure CeO 2 and ZrO 2 . The solid solution exhibits better conversions of CH 4 and CO 2 , a higher H 2 /CO ratio, and low carbon deposition compared to its pure counterpart. The density functional theory (DFT) studies unveil oxygen vacancy formation energy (OVFE) as a descriptor that decreased for Ce 0.5 Zr 0. 5 O 2 due to the incorporation of Zr 4+ and enhanced mobility of O anions, OSC, and reducibility.</description><subject>Basicity</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Cerium oxides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coprecipitation</subject><subject>Crystallography and Scattering Methods</subject><subject>Density functional theory</subject><subject>Energy Materials</subject><subject>Energy of formation</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Lattice vacancies</subject><subject>Materials Science</subject><subject>Methane</subject><subject>Oxygen</subject><subject>Polymer Sciences</subject><subject>Reforming</subject><subject>Solid Mechanics</subject><subject>Solid solutions</subject><subject>Storage capacity</subject><subject>Synthesis gas</subject><subject>Zirconium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1u1DAUhS0EEkPLC7CyxIYuTK9_kozZoailSFVn0cKCjeXYTpRqxg62p5q8Gk9Xh4DYsbpXut85R_ZB6B2FjxSguUwUthUnwCiBumFAqhdoQ6uGE7EF_hJtABgjTNT0NXqT0iMAVA2jG_Trbrxs3elHpOS0Y9jorPdzyniKbtLRWfw0ahy8Iym7CZtAysGM05h1HoPHfYi4LbroynYY_YBDj9sbgXMoFsEejcNp9oNOn3AMe7ecw2kenMcph6gHVyInbcY84w-7-_YCa2__Ek_aaG_mJeSwxjnv4rCQ36-vLs7Rq17vk3v7Z56hb9dXD-0Nud19-dp-viWGU5lJX4PmUhvOpTXbGqiwotbS2gY62XW1lV3TbXvGO9dV0BtRQ99IJjohrZBVz8_Q-9W3POjn0aWsHsMx-hKpWM2o5LypqkKxlTIxpFT-Q01xPOg4Kwpq6UitHanSkfrdkVpEfBWlAvvBxX_W_1E9A5ZOlcA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Prasad, Manohar</creator><creator>Ray, Koustuv</creator><creator>Sinhamahapatra, Apurba</creator><creator>Sengupta, Siddhartha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9003-3222</orcidid></search><sort><creationdate>2022</creationdate><title>Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)</title><author>Prasad, Manohar ; Ray, Koustuv ; Sinhamahapatra, Apurba ; Sengupta, Siddhartha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f60a39ac339dc86014d46a9dd70b9bb6d9b7b8f23beb50fc460f7924b49d495f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basicity</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Cerium oxides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coprecipitation</topic><topic>Crystallography and Scattering Methods</topic><topic>Density functional theory</topic><topic>Energy Materials</topic><topic>Energy of formation</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Lattice vacancies</topic><topic>Materials Science</topic><topic>Methane</topic><topic>Oxygen</topic><topic>Polymer Sciences</topic><topic>Reforming</topic><topic>Solid Mechanics</topic><topic>Solid solutions</topic><topic>Storage capacity</topic><topic>Synthesis gas</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, Manohar</creatorcontrib><creatorcontrib>Ray, Koustuv</creatorcontrib><creatorcontrib>Sinhamahapatra, Apurba</creatorcontrib><creatorcontrib>Sengupta, Siddhartha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, Manohar</au><au>Ray, Koustuv</au><au>Sinhamahapatra, Apurba</au><au>Sengupta, Siddhartha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022</date><risdate>2022</risdate><volume>57</volume><issue>4</issue><spage>2839</spage><epage>2856</epage><pages>2839-2856</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Ceria-zirconia solid solution (Ce 0.5 Zr 0.5 O 2 )-supported Ni catalyst (15 wt. %) is prepared by one-step co-precipitation followed by calcination reduction for CO 2 reforming of CH 4 (DRM). Oxygen storage capacity (OSC) is measured by O 2 pulse injection at the reaction temperature. The solid solution is formed upon incorporating Zr 4+ into ceria, subsequently accelerating oxygen mobility from lattice (bulk) to the surface, enhancing %Ce 3+ due to increased oxygen vacancies, and thus improving OSC, reducibility, surface basicity, and Ni dispersion compared to pure CeO 2 and ZrO 2 . The solid solution exhibits better conversions of CH 4 and CO 2 , a higher H 2 /CO ratio, and low carbon deposition compared to its pure counterpart. The density functional theory (DFT) studies unveil oxygen vacancy formation energy (OVFE) as a descriptor that decreased for Ce 0.5 Zr 0. 5 O 2 due to the incorporation of Zr 4+ and enhanced mobility of O anions, OSC, and reducibility.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06720-5</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9003-3222</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2022, Vol.57 (4), p.2839-2856
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2621933755
source SpringerNature Journals
subjects Basicity
Carbon dioxide
Catalysts
Cerium oxides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Coprecipitation
Crystallography and Scattering Methods
Density functional theory
Energy Materials
Energy of formation
Free energy
Heat of formation
Lattice vacancies
Materials Science
Methane
Oxygen
Polymer Sciences
Reforming
Solid Mechanics
Solid solutions
Storage capacity
Synthesis gas
Zirconium dioxide
title Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ni/CexZr1-xO2%20catalyst%20prepared%20via%20one-step%20co-precipitation%20for%20CO2%20reforming%20of%20CH4%20to%20produce%20syngas:%20role%20of%20oxygen%20storage%20capacity%20(OSC)%20and%20oxygen%20vacancy%20formation%20energy%20(OVFE)&rft.jtitle=Journal%20of%20materials%20science&rft.au=Prasad,%20Manohar&rft.date=2022&rft.volume=57&rft.issue=4&rft.spage=2839&rft.epage=2856&rft.pages=2839-2856&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06720-5&rft_dat=%3Cproquest_cross%3E2621933755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621933755&rft_id=info:pmid/&rfr_iscdi=true