Generalized core maintenance of dynamic bipartite graphs

k -core is important in many graph mining applications, such as community detection and clique finding. As one generalized concept of k -core, ( i ,  j )-core is more suited for bipartite graph analysis since it can identify the functions of two different types of vertices. Because ( i ,  j )-cores...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery 2022, Vol.36 (1), p.209-239
Hauptverfasser: Bai, Wen, Chen, Yadi, Wu, Di, Huang, Zhichuan, Zhou, Yipeng, Xu, Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 1
container_start_page 209
container_title Data mining and knowledge discovery
container_volume 36
creator Bai, Wen
Chen, Yadi
Wu, Di
Huang, Zhichuan
Zhou, Yipeng
Xu, Chuan
description k -core is important in many graph mining applications, such as community detection and clique finding. As one generalized concept of k -core, ( i ,  j )-core is more suited for bipartite graph analysis since it can identify the functions of two different types of vertices. Because ( i ,  j )-cores evolve as edges are inserted into (removed from) a dynamic bipartite graph, it is more economical to maintain them rather than decompose the graph recursively when only a few edges change. Moreover, many applications (e.g., graph visualization) only focus on some dense ( i ,  j )-cores. Existing solutions are simply insufficiently adaptable. They must maintain all ( i ,  j )-cores rather than just a subset of them, which requires more effort. To solve this issue, we propose novel maintenance methods for updating expected ( i ,  j )-cores. To estimate the influence scope of inserted (removed) edges, we first construct quasi-( i ,  j )-cores, which loosen the constraint of ( i ,  j )-cores but have similar properties. Second, we present a bottom-up approach for efficiently maintaining all ( i ,  j )-cores, from sparse to dense. Thirdly, because certain applications only focus on dense ( i ,  j )-cores of top- n layers, we also propose a top-down approach to maintain ( i ,  j )-cores from dense to sparse. Finally, we conduct extensive experiments to validate the efficiency of proposed approaches. Experimental results show that our maintenance solutions outperform existing approaches by one order of magnitude.
doi_str_mv 10.1007/s10618-021-00805-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621928680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621928680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7b39a79ead2acdc5a8fb1ee91a1bca18b265c1015d05adb6f3d2ac38f71502953</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjDzBFYjbc2ThxRlRBQarEAhKbdXEuJVXrBDsdyq8nJUhsTPcOz_ue9AhxhXCDAMVtQsjRSlAoASwYCUdihqbQsjD5-_GYtb2TxiKcirOU1gBglIaZsAsOHGnTfnGd-S5ytqU2DBwoeM66Jqv3gbatz6q2pzi0A2erSP1HuhAnDW0SX_7ec_H2-PA6f5LLl8Xz_H4pvcZykEWlSypKplqRr70h21TIXCJh5QltpXLjEdDUYKiu8kYfQG2bAg2o0uhzcT3t9rH73HEa3LrbxTC-dCpXWCqbWxgpNVE-dilFblwf2y3FvUNwB0NuMuRGQ-7HkDuU9FRKIxxWHP-m_2l9A8lQaP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621928680</pqid></control><display><type>article</type><title>Generalized core maintenance of dynamic bipartite graphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bai, Wen ; Chen, Yadi ; Wu, Di ; Huang, Zhichuan ; Zhou, Yipeng ; Xu, Chuan</creator><creatorcontrib>Bai, Wen ; Chen, Yadi ; Wu, Di ; Huang, Zhichuan ; Zhou, Yipeng ; Xu, Chuan</creatorcontrib><description>k -core is important in many graph mining applications, such as community detection and clique finding. As one generalized concept of k -core, ( i ,  j )-core is more suited for bipartite graph analysis since it can identify the functions of two different types of vertices. Because ( i ,  j )-cores evolve as edges are inserted into (removed from) a dynamic bipartite graph, it is more economical to maintain them rather than decompose the graph recursively when only a few edges change. Moreover, many applications (e.g., graph visualization) only focus on some dense ( i ,  j )-cores. Existing solutions are simply insufficiently adaptable. They must maintain all ( i ,  j )-cores rather than just a subset of them, which requires more effort. To solve this issue, we propose novel maintenance methods for updating expected ( i ,  j )-cores. To estimate the influence scope of inserted (removed) edges, we first construct quasi-( i ,  j )-cores, which loosen the constraint of ( i ,  j )-cores but have similar properties. Second, we present a bottom-up approach for efficiently maintaining all ( i ,  j )-cores, from sparse to dense. Thirdly, because certain applications only focus on dense ( i ,  j )-cores of top- n layers, we also propose a top-down approach to maintain ( i ,  j )-cores from dense to sparse. Finally, we conduct extensive experiments to validate the efficiency of proposed approaches. Experimental results show that our maintenance solutions outperform existing approaches by one order of magnitude.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-021-00805-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Data Mining and Knowledge Discovery ; Decomposition ; Graph theory ; Graphs ; Information Storage and Retrieval ; Maintenance ; Methods ; Physics ; Statistics for Engineering ; Visualization</subject><ispartof>Data mining and knowledge discovery, 2022, Vol.36 (1), p.209-239</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7b39a79ead2acdc5a8fb1ee91a1bca18b265c1015d05adb6f3d2ac38f71502953</citedby><cites>FETCH-LOGICAL-c319t-7b39a79ead2acdc5a8fb1ee91a1bca18b265c1015d05adb6f3d2ac38f71502953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10618-021-00805-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10618-021-00805-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bai, Wen</creatorcontrib><creatorcontrib>Chen, Yadi</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Huang, Zhichuan</creatorcontrib><creatorcontrib>Zhou, Yipeng</creatorcontrib><creatorcontrib>Xu, Chuan</creatorcontrib><title>Generalized core maintenance of dynamic bipartite graphs</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>k -core is important in many graph mining applications, such as community detection and clique finding. As one generalized concept of k -core, ( i ,  j )-core is more suited for bipartite graph analysis since it can identify the functions of two different types of vertices. Because ( i ,  j )-cores evolve as edges are inserted into (removed from) a dynamic bipartite graph, it is more economical to maintain them rather than decompose the graph recursively when only a few edges change. Moreover, many applications (e.g., graph visualization) only focus on some dense ( i ,  j )-cores. Existing solutions are simply insufficiently adaptable. They must maintain all ( i ,  j )-cores rather than just a subset of them, which requires more effort. To solve this issue, we propose novel maintenance methods for updating expected ( i ,  j )-cores. To estimate the influence scope of inserted (removed) edges, we first construct quasi-( i ,  j )-cores, which loosen the constraint of ( i ,  j )-cores but have similar properties. Second, we present a bottom-up approach for efficiently maintaining all ( i ,  j )-cores, from sparse to dense. Thirdly, because certain applications only focus on dense ( i ,  j )-cores of top- n layers, we also propose a top-down approach to maintain ( i ,  j )-cores from dense to sparse. Finally, we conduct extensive experiments to validate the efficiency of proposed approaches. Experimental results show that our maintenance solutions outperform existing approaches by one order of magnitude.</description><subject>Apexes</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decomposition</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information Storage and Retrieval</subject><subject>Maintenance</subject><subject>Methods</subject><subject>Physics</subject><subject>Statistics for Engineering</subject><subject>Visualization</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAQhi0EEuXjDzBFYjbc2ThxRlRBQarEAhKbdXEuJVXrBDsdyq8nJUhsTPcOz_ue9AhxhXCDAMVtQsjRSlAoASwYCUdihqbQsjD5-_GYtb2TxiKcirOU1gBglIaZsAsOHGnTfnGd-S5ytqU2DBwoeM66Jqv3gbatz6q2pzi0A2erSP1HuhAnDW0SX_7ec_H2-PA6f5LLl8Xz_H4pvcZykEWlSypKplqRr70h21TIXCJh5QltpXLjEdDUYKiu8kYfQG2bAg2o0uhzcT3t9rH73HEa3LrbxTC-dCpXWCqbWxgpNVE-dilFblwf2y3FvUNwB0NuMuRGQ-7HkDuU9FRKIxxWHP-m_2l9A8lQaP8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Bai, Wen</creator><creator>Chen, Yadi</creator><creator>Wu, Di</creator><creator>Huang, Zhichuan</creator><creator>Zhou, Yipeng</creator><creator>Xu, Chuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2022</creationdate><title>Generalized core maintenance of dynamic bipartite graphs</title><author>Bai, Wen ; Chen, Yadi ; Wu, Di ; Huang, Zhichuan ; Zhou, Yipeng ; Xu, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7b39a79ead2acdc5a8fb1ee91a1bca18b265c1015d05adb6f3d2ac38f71502953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decomposition</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information Storage and Retrieval</topic><topic>Maintenance</topic><topic>Methods</topic><topic>Physics</topic><topic>Statistics for Engineering</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Wen</creatorcontrib><creatorcontrib>Chen, Yadi</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Huang, Zhichuan</creatorcontrib><creatorcontrib>Zhou, Yipeng</creatorcontrib><creatorcontrib>Xu, Chuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Wen</au><au>Chen, Yadi</au><au>Wu, Di</au><au>Huang, Zhichuan</au><au>Zhou, Yipeng</au><au>Xu, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized core maintenance of dynamic bipartite graphs</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2022</date><risdate>2022</risdate><volume>36</volume><issue>1</issue><spage>209</spage><epage>239</epage><pages>209-239</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>k -core is important in many graph mining applications, such as community detection and clique finding. As one generalized concept of k -core, ( i ,  j )-core is more suited for bipartite graph analysis since it can identify the functions of two different types of vertices. Because ( i ,  j )-cores evolve as edges are inserted into (removed from) a dynamic bipartite graph, it is more economical to maintain them rather than decompose the graph recursively when only a few edges change. Moreover, many applications (e.g., graph visualization) only focus on some dense ( i ,  j )-cores. Existing solutions are simply insufficiently adaptable. They must maintain all ( i ,  j )-cores rather than just a subset of them, which requires more effort. To solve this issue, we propose novel maintenance methods for updating expected ( i ,  j )-cores. To estimate the influence scope of inserted (removed) edges, we first construct quasi-( i ,  j )-cores, which loosen the constraint of ( i ,  j )-cores but have similar properties. Second, we present a bottom-up approach for efficiently maintaining all ( i ,  j )-cores, from sparse to dense. Thirdly, because certain applications only focus on dense ( i ,  j )-cores of top- n layers, we also propose a top-down approach to maintain ( i ,  j )-cores from dense to sparse. Finally, we conduct extensive experiments to validate the efficiency of proposed approaches. Experimental results show that our maintenance solutions outperform existing approaches by one order of magnitude.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10618-021-00805-0</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1384-5810
ispartof Data mining and knowledge discovery, 2022, Vol.36 (1), p.209-239
issn 1384-5810
1573-756X
language eng
recordid cdi_proquest_journals_2621928680
source SpringerLink Journals - AutoHoldings
subjects Apexes
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Decomposition
Graph theory
Graphs
Information Storage and Retrieval
Maintenance
Methods
Physics
Statistics for Engineering
Visualization
title Generalized core maintenance of dynamic bipartite graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20core%20maintenance%20of%20dynamic%20bipartite%20graphs&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Bai,%20Wen&rft.date=2022&rft.volume=36&rft.issue=1&rft.spage=209&rft.epage=239&rft.pages=209-239&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-021-00805-0&rft_dat=%3Cproquest_cross%3E2621928680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621928680&rft_id=info:pmid/&rfr_iscdi=true