Uniform and scalable sampling of highly configurable systems
Many analyses on configurable software systems are intractable when confronted with colossal and highly-constrained configuration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistic...
Gespeichert in:
Veröffentlicht in: | Empirical software engineering : an international journal 2022-03, Vol.27 (2), Article 44 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Empirical software engineering : an international journal |
container_volume | 27 |
creator | Heradio, Ruben Fernandez-Amoros, David Galindo, José A. Benavides, David Batory, Don |
description | Many analyses on configurable software systems are intractable when confronted with colossal and highly-constrained configuration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistical inference requires each member of the population to be equally likely to be included in the sample, i.e., the sampling process needs to be “uniform”. SAT-samplers have been developed to generate uniform random samples at a reasonable computational cost. However, there is a lack of experimental validation over colossal spaces to show whether the samplers indeed produce uniform samples or not. This paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and five other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our experimental results show only BDDSampler satisfies both scalability and uniformity. |
doi_str_mv | 10.1007/s10664-021-10102-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621822859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621822859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7b998aa2310170dacbbb58c1b3b693fc7bf4ca0b780b335937b5e728dcb47ef83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2XwseJGiVSh4seeQpMl2y36ZdA_990ZX8OZpBuZ9ZoYHoVsC9wRAPiQCQpQYKMEECFDMz9CCcMmwFESc554pihnl4hJdpXQAgEqWfIEet30ThtgVpt8VyZnW2NYXyXRj2_R1MYRi39T79lS4oQ9NPcV5fkpH36VrdBFMm_zNb12i7cvzx-oVb97Xb6unDXZMsCOWtqqUMZTl1yTsjLPWcuWIZVZULDhpQ-kMWKnAMsYrJi33kqqds6X0QbElupv3jnH4nHw66sMwxT6f1FRQoihVmVoiOqdcHFKKPugxNp2JJ01Af1vSsyWdLekfS5pniM1QyuG-9vFv9T_UF188aik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621822859</pqid></control><display><type>article</type><title>Uniform and scalable sampling of highly configurable systems</title><source>SpringerNature Journals</source><creator>Heradio, Ruben ; Fernandez-Amoros, David ; Galindo, José A. ; Benavides, David ; Batory, Don</creator><creatorcontrib>Heradio, Ruben ; Fernandez-Amoros, David ; Galindo, José A. ; Benavides, David ; Batory, Don</creatorcontrib><description>Many analyses on configurable software systems are intractable when confronted with colossal and highly-constrained configuration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistical inference requires each member of the population to be equally likely to be included in the sample, i.e., the sampling process needs to be “uniform”. SAT-samplers have been developed to generate uniform random samples at a reasonable computational cost. However, there is a lack of experimental validation over colossal spaces to show whether the samplers indeed produce uniform samples or not. This paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and five other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our experimental results show only BDDSampler satisfies both scalability and uniformity.</description><identifier>ISSN: 1382-3256</identifier><identifier>EISSN: 1573-7616</identifier><identifier>DOI: 10.1007/s10664-021-10102-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Configurable programs ; Embedded systems ; Hypotheses ; Interpreters ; Population ; Probability ; Product lines ; Programming Languages ; Sample size ; Samplers ; Samples ; Sampling ; Software engineering ; Software Engineering/Programming and Operating Systems ; Software Product Lines and Variability-rich Systems (SPLC) ; Statistical inference ; Statistical methods ; Statistical tests</subject><ispartof>Empirical software engineering : an international journal, 2022-03, Vol.27 (2), Article 44</ispartof><rights>The Author(s) 2022. corrected publication 2022</rights><rights>The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7b998aa2310170dacbbb58c1b3b693fc7bf4ca0b780b335937b5e728dcb47ef83</citedby><cites>FETCH-LOGICAL-c363t-7b998aa2310170dacbbb58c1b3b693fc7bf4ca0b780b335937b5e728dcb47ef83</cites><orcidid>0000-0002-7131-0482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10664-021-10102-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10664-021-10102-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Heradio, Ruben</creatorcontrib><creatorcontrib>Fernandez-Amoros, David</creatorcontrib><creatorcontrib>Galindo, José A.</creatorcontrib><creatorcontrib>Benavides, David</creatorcontrib><creatorcontrib>Batory, Don</creatorcontrib><title>Uniform and scalable sampling of highly configurable systems</title><title>Empirical software engineering : an international journal</title><addtitle>Empir Software Eng</addtitle><description>Many analyses on configurable software systems are intractable when confronted with colossal and highly-constrained configuration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistical inference requires each member of the population to be equally likely to be included in the sample, i.e., the sampling process needs to be “uniform”. SAT-samplers have been developed to generate uniform random samples at a reasonable computational cost. However, there is a lack of experimental validation over colossal spaces to show whether the samplers indeed produce uniform samples or not. This paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and five other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our experimental results show only BDDSampler satisfies both scalability and uniformity.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Configurable programs</subject><subject>Embedded systems</subject><subject>Hypotheses</subject><subject>Interpreters</subject><subject>Population</subject><subject>Probability</subject><subject>Product lines</subject><subject>Programming Languages</subject><subject>Sample size</subject><subject>Samplers</subject><subject>Samples</subject><subject>Sampling</subject><subject>Software engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Software Product Lines and Variability-rich Systems (SPLC)</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><issn>1382-3256</issn><issn>1573-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2XwseJGiVSh4seeQpMl2y36ZdA_990ZX8OZpBuZ9ZoYHoVsC9wRAPiQCQpQYKMEECFDMz9CCcMmwFESc554pihnl4hJdpXQAgEqWfIEet30ThtgVpt8VyZnW2NYXyXRj2_R1MYRi39T79lS4oQ9NPcV5fkpH36VrdBFMm_zNb12i7cvzx-oVb97Xb6unDXZMsCOWtqqUMZTl1yTsjLPWcuWIZVZULDhpQ-kMWKnAMsYrJi33kqqds6X0QbElupv3jnH4nHw66sMwxT6f1FRQoihVmVoiOqdcHFKKPugxNp2JJ01Af1vSsyWdLekfS5pniM1QyuG-9vFv9T_UF188aik</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Heradio, Ruben</creator><creator>Fernandez-Amoros, David</creator><creator>Galindo, José A.</creator><creator>Benavides, David</creator><creator>Batory, Don</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7131-0482</orcidid></search><sort><creationdate>20220301</creationdate><title>Uniform and scalable sampling of highly configurable systems</title><author>Heradio, Ruben ; Fernandez-Amoros, David ; Galindo, José A. ; Benavides, David ; Batory, Don</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7b998aa2310170dacbbb58c1b3b693fc7bf4ca0b780b335937b5e728dcb47ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Configurable programs</topic><topic>Embedded systems</topic><topic>Hypotheses</topic><topic>Interpreters</topic><topic>Population</topic><topic>Probability</topic><topic>Product lines</topic><topic>Programming Languages</topic><topic>Sample size</topic><topic>Samplers</topic><topic>Samples</topic><topic>Sampling</topic><topic>Software engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Software Product Lines and Variability-rich Systems (SPLC)</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heradio, Ruben</creatorcontrib><creatorcontrib>Fernandez-Amoros, David</creatorcontrib><creatorcontrib>Galindo, José A.</creatorcontrib><creatorcontrib>Benavides, David</creatorcontrib><creatorcontrib>Batory, Don</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Empirical software engineering : an international journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heradio, Ruben</au><au>Fernandez-Amoros, David</au><au>Galindo, José A.</au><au>Benavides, David</au><au>Batory, Don</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform and scalable sampling of highly configurable systems</atitle><jtitle>Empirical software engineering : an international journal</jtitle><stitle>Empir Software Eng</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>27</volume><issue>2</issue><artnum>44</artnum><issn>1382-3256</issn><eissn>1573-7616</eissn><abstract>Many analyses on configurable software systems are intractable when confronted with colossal and highly-constrained configuration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistical inference requires each member of the population to be equally likely to be included in the sample, i.e., the sampling process needs to be “uniform”. SAT-samplers have been developed to generate uniform random samples at a reasonable computational cost. However, there is a lack of experimental validation over colossal spaces to show whether the samplers indeed produce uniform samples or not. This paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and five other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our experimental results show only BDDSampler satisfies both scalability and uniformity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10664-021-10102-5</doi><orcidid>https://orcid.org/0000-0002-7131-0482</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-3256 |
ispartof | Empirical software engineering : an international journal, 2022-03, Vol.27 (2), Article 44 |
issn | 1382-3256 1573-7616 |
language | eng |
recordid | cdi_proquest_journals_2621822859 |
source | SpringerNature Journals |
subjects | Algorithms Compilers Computer Science Configurable programs Embedded systems Hypotheses Interpreters Population Probability Product lines Programming Languages Sample size Samplers Samples Sampling Software engineering Software Engineering/Programming and Operating Systems Software Product Lines and Variability-rich Systems (SPLC) Statistical inference Statistical methods Statistical tests |
title | Uniform and scalable sampling of highly configurable systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T00%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20and%20scalable%20sampling%20of%20highly%20configurable%20systems&rft.jtitle=Empirical%20software%20engineering%20:%20an%20international%20journal&rft.au=Heradio,%20Ruben&rft.date=2022-03-01&rft.volume=27&rft.issue=2&rft.artnum=44&rft.issn=1382-3256&rft.eissn=1573-7616&rft_id=info:doi/10.1007/s10664-021-10102-5&rft_dat=%3Cproquest_cross%3E2621822859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621822859&rft_id=info:pmid/&rfr_iscdi=true |