Uniform and scalable sampling of highly configurable systems

Many analyses on configurable software systems are intractable when confronted with colossal and highly-constrained configuration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Empirical software engineering : an international journal 2022-03, Vol.27 (2), Article 44
Hauptverfasser: Heradio, Ruben, Fernandez-Amoros, David, Galindo, José A., Benavides, David, Batory, Don
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Empirical software engineering : an international journal
container_volume 27
creator Heradio, Ruben
Fernandez-Amoros, David
Galindo, José A.
Benavides, David
Batory, Don
description Many analyses on configurable software systems are intractable when confronted with colossal and highly-constrained configuration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistical inference requires each member of the population to be equally likely to be included in the sample, i.e., the sampling process needs to be “uniform”. SAT-samplers have been developed to generate uniform random samples at a reasonable computational cost. However, there is a lack of experimental validation over colossal spaces to show whether the samplers indeed produce uniform samples or not. This paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and five other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our experimental results show only BDDSampler satisfies both scalability and uniformity.
doi_str_mv 10.1007/s10664-021-10102-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621822859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621822859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7b998aa2310170dacbbb58c1b3b693fc7bf4ca0b780b335937b5e728dcb47ef83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2XwseJGiVSh4seeQpMl2y36ZdA_990ZX8OZpBuZ9ZoYHoVsC9wRAPiQCQpQYKMEECFDMz9CCcMmwFESc554pihnl4hJdpXQAgEqWfIEet30ThtgVpt8VyZnW2NYXyXRj2_R1MYRi39T79lS4oQ9NPcV5fkpH36VrdBFMm_zNb12i7cvzx-oVb97Xb6unDXZMsCOWtqqUMZTl1yTsjLPWcuWIZVZULDhpQ-kMWKnAMsYrJi33kqqds6X0QbElupv3jnH4nHw66sMwxT6f1FRQoihVmVoiOqdcHFKKPugxNp2JJ01Af1vSsyWdLekfS5pniM1QyuG-9vFv9T_UF188aik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621822859</pqid></control><display><type>article</type><title>Uniform and scalable sampling of highly configurable systems</title><source>SpringerNature Journals</source><creator>Heradio, Ruben ; Fernandez-Amoros, David ; Galindo, José A. ; Benavides, David ; Batory, Don</creator><creatorcontrib>Heradio, Ruben ; Fernandez-Amoros, David ; Galindo, José A. ; Benavides, David ; Batory, Don</creatorcontrib><description>Many analyses on configurable software systems are intractable when confronted with colossal and highly-constrained configuration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistical inference requires each member of the population to be equally likely to be included in the sample, i.e., the sampling process needs to be “uniform”. SAT-samplers have been developed to generate uniform random samples at a reasonable computational cost. However, there is a lack of experimental validation over colossal spaces to show whether the samplers indeed produce uniform samples or not. This paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and five other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our experimental results show only BDDSampler satisfies both scalability and uniformity.</description><identifier>ISSN: 1382-3256</identifier><identifier>EISSN: 1573-7616</identifier><identifier>DOI: 10.1007/s10664-021-10102-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Configurable programs ; Embedded systems ; Hypotheses ; Interpreters ; Population ; Probability ; Product lines ; Programming Languages ; Sample size ; Samplers ; Samples ; Sampling ; Software engineering ; Software Engineering/Programming and Operating Systems ; Software Product Lines and Variability-rich Systems (SPLC) ; Statistical inference ; Statistical methods ; Statistical tests</subject><ispartof>Empirical software engineering : an international journal, 2022-03, Vol.27 (2), Article 44</ispartof><rights>The Author(s) 2022. corrected publication 2022</rights><rights>The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7b998aa2310170dacbbb58c1b3b693fc7bf4ca0b780b335937b5e728dcb47ef83</citedby><cites>FETCH-LOGICAL-c363t-7b998aa2310170dacbbb58c1b3b693fc7bf4ca0b780b335937b5e728dcb47ef83</cites><orcidid>0000-0002-7131-0482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10664-021-10102-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10664-021-10102-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Heradio, Ruben</creatorcontrib><creatorcontrib>Fernandez-Amoros, David</creatorcontrib><creatorcontrib>Galindo, José A.</creatorcontrib><creatorcontrib>Benavides, David</creatorcontrib><creatorcontrib>Batory, Don</creatorcontrib><title>Uniform and scalable sampling of highly configurable systems</title><title>Empirical software engineering : an international journal</title><addtitle>Empir Software Eng</addtitle><description>Many analyses on configurable software systems are intractable when confronted with colossal and highly-constrained configuration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistical inference requires each member of the population to be equally likely to be included in the sample, i.e., the sampling process needs to be “uniform”. SAT-samplers have been developed to generate uniform random samples at a reasonable computational cost. However, there is a lack of experimental validation over colossal spaces to show whether the samplers indeed produce uniform samples or not. This paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and five other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our experimental results show only BDDSampler satisfies both scalability and uniformity.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Configurable programs</subject><subject>Embedded systems</subject><subject>Hypotheses</subject><subject>Interpreters</subject><subject>Population</subject><subject>Probability</subject><subject>Product lines</subject><subject>Programming Languages</subject><subject>Sample size</subject><subject>Samplers</subject><subject>Samples</subject><subject>Sampling</subject><subject>Software engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Software Product Lines and Variability-rich Systems (SPLC)</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><issn>1382-3256</issn><issn>1573-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2XwseJGiVSh4seeQpMl2y36ZdA_990ZX8OZpBuZ9ZoYHoVsC9wRAPiQCQpQYKMEECFDMz9CCcMmwFESc554pihnl4hJdpXQAgEqWfIEet30ThtgVpt8VyZnW2NYXyXRj2_R1MYRi39T79lS4oQ9NPcV5fkpH36VrdBFMm_zNb12i7cvzx-oVb97Xb6unDXZMsCOWtqqUMZTl1yTsjLPWcuWIZVZULDhpQ-kMWKnAMsYrJi33kqqds6X0QbElupv3jnH4nHw66sMwxT6f1FRQoihVmVoiOqdcHFKKPugxNp2JJ01Af1vSsyWdLekfS5pniM1QyuG-9vFv9T_UF188aik</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Heradio, Ruben</creator><creator>Fernandez-Amoros, David</creator><creator>Galindo, José A.</creator><creator>Benavides, David</creator><creator>Batory, Don</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7131-0482</orcidid></search><sort><creationdate>20220301</creationdate><title>Uniform and scalable sampling of highly configurable systems</title><author>Heradio, Ruben ; Fernandez-Amoros, David ; Galindo, José A. ; Benavides, David ; Batory, Don</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7b998aa2310170dacbbb58c1b3b693fc7bf4ca0b780b335937b5e728dcb47ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Configurable programs</topic><topic>Embedded systems</topic><topic>Hypotheses</topic><topic>Interpreters</topic><topic>Population</topic><topic>Probability</topic><topic>Product lines</topic><topic>Programming Languages</topic><topic>Sample size</topic><topic>Samplers</topic><topic>Samples</topic><topic>Sampling</topic><topic>Software engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Software Product Lines and Variability-rich Systems (SPLC)</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heradio, Ruben</creatorcontrib><creatorcontrib>Fernandez-Amoros, David</creatorcontrib><creatorcontrib>Galindo, José A.</creatorcontrib><creatorcontrib>Benavides, David</creatorcontrib><creatorcontrib>Batory, Don</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Empirical software engineering : an international journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heradio, Ruben</au><au>Fernandez-Amoros, David</au><au>Galindo, José A.</au><au>Benavides, David</au><au>Batory, Don</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform and scalable sampling of highly configurable systems</atitle><jtitle>Empirical software engineering : an international journal</jtitle><stitle>Empir Software Eng</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>27</volume><issue>2</issue><artnum>44</artnum><issn>1382-3256</issn><eissn>1573-7616</eissn><abstract>Many analyses on configurable software systems are intractable when confronted with colossal and highly-constrained configuration spaces. These analyses could instead use statistical inference, where a tractable sample accurately predicts results for the entire space. To do so, the laws of statistical inference requires each member of the population to be equally likely to be included in the sample, i.e., the sampling process needs to be “uniform”. SAT-samplers have been developed to generate uniform random samples at a reasonable computational cost. However, there is a lack of experimental validation over colossal spaces to show whether the samplers indeed produce uniform samples or not. This paper (i) proposes a new sampler named BDDSampler, (ii) presents a new statistical test to verify sampler uniformity, and (iii) reports the evaluation of BDDSampler and five other state-of-the-art samplers: KUS, QuickSampler, Smarch, Spur, and Unigen2. Our experimental results show only BDDSampler satisfies both scalability and uniformity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10664-021-10102-5</doi><orcidid>https://orcid.org/0000-0002-7131-0482</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1382-3256
ispartof Empirical software engineering : an international journal, 2022-03, Vol.27 (2), Article 44
issn 1382-3256
1573-7616
language eng
recordid cdi_proquest_journals_2621822859
source SpringerNature Journals
subjects Algorithms
Compilers
Computer Science
Configurable programs
Embedded systems
Hypotheses
Interpreters
Population
Probability
Product lines
Programming Languages
Sample size
Samplers
Samples
Sampling
Software engineering
Software Engineering/Programming and Operating Systems
Software Product Lines and Variability-rich Systems (SPLC)
Statistical inference
Statistical methods
Statistical tests
title Uniform and scalable sampling of highly configurable systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T00%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20and%20scalable%20sampling%20of%20highly%20configurable%20systems&rft.jtitle=Empirical%20software%20engineering%20:%20an%20international%20journal&rft.au=Heradio,%20Ruben&rft.date=2022-03-01&rft.volume=27&rft.issue=2&rft.artnum=44&rft.issn=1382-3256&rft.eissn=1573-7616&rft_id=info:doi/10.1007/s10664-021-10102-5&rft_dat=%3Cproquest_cross%3E2621822859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621822859&rft_id=info:pmid/&rfr_iscdi=true