CRC-Aided List Decoding of Convolutional and Polar Codes for Short Messages in 5G

This paper explores list decoding of convolutional and polar codes for short messages such as those found in the 5G physical broadcast channel. A cyclic redundancy check (CRC) is used to select a codeword from a list of likely codewords. One example in the 5G standard encodes a 32-bit message with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-01
Hauptverfasser: King, Jacob, Kwon, Alexandra, Yang, Hengjie, Ryan, William, Wesel, Richard D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator King, Jacob
Kwon, Alexandra
Yang, Hengjie
Ryan, William
Wesel, Richard D
description This paper explores list decoding of convolutional and polar codes for short messages such as those found in the 5G physical broadcast channel. A cyclic redundancy check (CRC) is used to select a codeword from a list of likely codewords. One example in the 5G standard encodes a 32-bit message with a 24-bit CRC and a 512-bit polar code with additional bits added by repetition to achieve a very low rate of 32/864. This paper shows that optimizing the CRC length improves the \(E_b/N_0\) performance of this polar code, where \(E_b/N_0\) is the ratio of the energy per data bit to the noise power spectral density. Furthermore, even better \(E_b/N_0\) performance is achieved by replacing the polar code with a tail-biting convolutional code (TBCC) with a distance-spectrum-optimal (DSO) CRC. This paper identifies the optimal CRC length to minimize the frame error rate (FER) of a rate-1/5 TBCC at a specific value of \(E_b/N_0\). We also show that this optimized TBCC/CRC can attain the same excellent \(E_b/N_0\) performance with the very low rate of 32/864 of the 5G polar code, where the low rate is achieved through repetition. We show that the proposed TBCC/CRC concatenated code outperforms the PBCH polar code described in the 5G standard both in terms of FER and decoding run time. We also explore the tradeoff between undetected error rate and erasure rate as the CRC size varies.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2621821005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621821005</sourcerecordid><originalsourceid>FETCH-proquest_journals_26218210053</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgKNo7PHBdSBNTu5X4Wyj425dg0ppS8jSv9fx24QFcDQzDjNhUSJmlxVKICUuIGs65yFdCKTllF33V6dpbZ-HoqYONe6D1oQasQGP4YNt3HoNpwQQLZ2xNHLx1BBVGuD0xdnByRKYelA-g9nM2rkxLLvlxxha77V0f0lfEd--oKxvs43CkUuQiK0TGuZL_VV-vMj1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621821005</pqid></control><display><type>article</type><title>CRC-Aided List Decoding of Convolutional and Polar Codes for Short Messages in 5G</title><source>Free E- Journals</source><creator>King, Jacob ; Kwon, Alexandra ; Yang, Hengjie ; Ryan, William ; Wesel, Richard D</creator><creatorcontrib>King, Jacob ; Kwon, Alexandra ; Yang, Hengjie ; Ryan, William ; Wesel, Richard D</creatorcontrib><description>This paper explores list decoding of convolutional and polar codes for short messages such as those found in the 5G physical broadcast channel. A cyclic redundancy check (CRC) is used to select a codeword from a list of likely codewords. One example in the 5G standard encodes a 32-bit message with a 24-bit CRC and a 512-bit polar code with additional bits added by repetition to achieve a very low rate of 32/864. This paper shows that optimizing the CRC length improves the \(E_b/N_0\) performance of this polar code, where \(E_b/N_0\) is the ratio of the energy per data bit to the noise power spectral density. Furthermore, even better \(E_b/N_0\) performance is achieved by replacing the polar code with a tail-biting convolutional code (TBCC) with a distance-spectrum-optimal (DSO) CRC. This paper identifies the optimal CRC length to minimize the frame error rate (FER) of a rate-1/5 TBCC at a specific value of \(E_b/N_0\). We also show that this optimized TBCC/CRC can attain the same excellent \(E_b/N_0\) performance with the very low rate of 32/864 of the 5G polar code, where the low rate is achieved through repetition. We show that the proposed TBCC/CRC concatenated code outperforms the PBCH polar code described in the 5G standard both in terms of FER and decoding run time. We also explore the tradeoff between undetected error rate and erasure rate as the CRC size varies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decoding ; Messages ; Optimization ; Power spectral density ; Redundancy ; Repetition</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>King, Jacob</creatorcontrib><creatorcontrib>Kwon, Alexandra</creatorcontrib><creatorcontrib>Yang, Hengjie</creatorcontrib><creatorcontrib>Ryan, William</creatorcontrib><creatorcontrib>Wesel, Richard D</creatorcontrib><title>CRC-Aided List Decoding of Convolutional and Polar Codes for Short Messages in 5G</title><title>arXiv.org</title><description>This paper explores list decoding of convolutional and polar codes for short messages such as those found in the 5G physical broadcast channel. A cyclic redundancy check (CRC) is used to select a codeword from a list of likely codewords. One example in the 5G standard encodes a 32-bit message with a 24-bit CRC and a 512-bit polar code with additional bits added by repetition to achieve a very low rate of 32/864. This paper shows that optimizing the CRC length improves the \(E_b/N_0\) performance of this polar code, where \(E_b/N_0\) is the ratio of the energy per data bit to the noise power spectral density. Furthermore, even better \(E_b/N_0\) performance is achieved by replacing the polar code with a tail-biting convolutional code (TBCC) with a distance-spectrum-optimal (DSO) CRC. This paper identifies the optimal CRC length to minimize the frame error rate (FER) of a rate-1/5 TBCC at a specific value of \(E_b/N_0\). We also show that this optimized TBCC/CRC can attain the same excellent \(E_b/N_0\) performance with the very low rate of 32/864 of the 5G polar code, where the low rate is achieved through repetition. We show that the proposed TBCC/CRC concatenated code outperforms the PBCH polar code described in the 5G standard both in terms of FER and decoding run time. We also explore the tradeoff between undetected error rate and erasure rate as the CRC size varies.</description><subject>Decoding</subject><subject>Messages</subject><subject>Optimization</subject><subject>Power spectral density</subject><subject>Redundancy</subject><subject>Repetition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEsKwjAUAIMgKNo7PHBdSBNTu5X4Wyj425dg0ppS8jSv9fx24QFcDQzDjNhUSJmlxVKICUuIGs65yFdCKTllF33V6dpbZ-HoqYONe6D1oQasQGP4YNt3HoNpwQQLZ2xNHLx1BBVGuD0xdnByRKYelA-g9nM2rkxLLvlxxha77V0f0lfEd--oKxvs43CkUuQiK0TGuZL_VV-vMj1k</recordid><startdate>20220119</startdate><enddate>20220119</enddate><creator>King, Jacob</creator><creator>Kwon, Alexandra</creator><creator>Yang, Hengjie</creator><creator>Ryan, William</creator><creator>Wesel, Richard D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220119</creationdate><title>CRC-Aided List Decoding of Convolutional and Polar Codes for Short Messages in 5G</title><author>King, Jacob ; Kwon, Alexandra ; Yang, Hengjie ; Ryan, William ; Wesel, Richard D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26218210053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Decoding</topic><topic>Messages</topic><topic>Optimization</topic><topic>Power spectral density</topic><topic>Redundancy</topic><topic>Repetition</topic><toplevel>online_resources</toplevel><creatorcontrib>King, Jacob</creatorcontrib><creatorcontrib>Kwon, Alexandra</creatorcontrib><creatorcontrib>Yang, Hengjie</creatorcontrib><creatorcontrib>Ryan, William</creatorcontrib><creatorcontrib>Wesel, Richard D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Jacob</au><au>Kwon, Alexandra</au><au>Yang, Hengjie</au><au>Ryan, William</au><au>Wesel, Richard D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>CRC-Aided List Decoding of Convolutional and Polar Codes for Short Messages in 5G</atitle><jtitle>arXiv.org</jtitle><date>2022-01-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This paper explores list decoding of convolutional and polar codes for short messages such as those found in the 5G physical broadcast channel. A cyclic redundancy check (CRC) is used to select a codeword from a list of likely codewords. One example in the 5G standard encodes a 32-bit message with a 24-bit CRC and a 512-bit polar code with additional bits added by repetition to achieve a very low rate of 32/864. This paper shows that optimizing the CRC length improves the \(E_b/N_0\) performance of this polar code, where \(E_b/N_0\) is the ratio of the energy per data bit to the noise power spectral density. Furthermore, even better \(E_b/N_0\) performance is achieved by replacing the polar code with a tail-biting convolutional code (TBCC) with a distance-spectrum-optimal (DSO) CRC. This paper identifies the optimal CRC length to minimize the frame error rate (FER) of a rate-1/5 TBCC at a specific value of \(E_b/N_0\). We also show that this optimized TBCC/CRC can attain the same excellent \(E_b/N_0\) performance with the very low rate of 32/864 of the 5G polar code, where the low rate is achieved through repetition. We show that the proposed TBCC/CRC concatenated code outperforms the PBCH polar code described in the 5G standard both in terms of FER and decoding run time. We also explore the tradeoff between undetected error rate and erasure rate as the CRC size varies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2621821005
source Free E- Journals
subjects Decoding
Messages
Optimization
Power spectral density
Redundancy
Repetition
title CRC-Aided List Decoding of Convolutional and Polar Codes for Short Messages in 5G
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=CRC-Aided%20List%20Decoding%20of%20Convolutional%20and%20Polar%20Codes%20for%20Short%20Messages%20in%205G&rft.jtitle=arXiv.org&rft.au=King,%20Jacob&rft.date=2022-01-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2621821005%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621821005&rft_id=info:pmid/&rfr_iscdi=true