The wave speed of an FKPP equation with jumps via coordinated branching

We consider a Fisher-KPP equation with nonlinear selection driven by a Poisson random measure. We prove that the equation admits a unique wave speed \( \mathfrak{s}> 0 \) given by \(\frac{\mathfrak{s}^{2}}{2} = \int_{[0, 1]}\frac{ \log{(1 + y)}}{y} \mathfrak{R}( \mathrm d y)\) where \( \mathfrak{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Rosati, Tommaso, Tóbiás, András
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a Fisher-KPP equation with nonlinear selection driven by a Poisson random measure. We prove that the equation admits a unique wave speed \( \mathfrak{s}> 0 \) given by \(\frac{\mathfrak{s}^{2}}{2} = \int_{[0, 1]}\frac{ \log{(1 + y)}}{y} \mathfrak{R}( \mathrm d y)\) where \( \mathfrak{R} \) is the intensity of the impacts of the driving noise. Our arguments are based on upper and lower bounds via a quenched duality with a coordinated system of branching Brownian motions.
ISSN:2331-8422