Cross Parallax Attention Network for Stereo Image Super-Resolution

Stereo super-resolution (SR) aims to enhance the spatial resolution of one camera view using additional information from the other. Previous deep-learning-based stereo SR methods indeed improved the SR performance effectively by employing additional information, but they are unable to super-resolve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2022, Vol.24, p.202-216
Hauptverfasser: Chen, Canqiang, Qing, Chunmei, Xu, Xiangmin, Dickinson, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue
container_start_page 202
container_title IEEE transactions on multimedia
container_volume 24
creator Chen, Canqiang
Qing, Chunmei
Xu, Xiangmin
Dickinson, Patrick
description Stereo super-resolution (SR) aims to enhance the spatial resolution of one camera view using additional information from the other. Previous deep-learning-based stereo SR methods indeed improved the SR performance effectively by employing additional information, but they are unable to super-resolve stereo images where there are large disparities, or different types of epipolar lines. Moreover, in these methods, one model can only super-solve images of a particular view, and for one specific scale factor. This paper proposes a cross parallax attention stereo super-resolution network (CPASSRnet) which can perform stereo SR of multiple scale factors for both views, with a single model. To overcome the difficulties of large disparity and different types of epipolar lines, a cross parallax attention module (CPAM) is presented, which captures the global correspondence of additional information for each view, relative to the other. CPAM allows the two views to exchange additional information with each other according to the generated attention maps. Quantitative and qualitative results compared with the state of the arts illustrate the superiority of CPASSRnet. Ablation experiments demonstrate that the proposed components are effective and noise tests verify the robustness of CPASSRnet.
doi_str_mv 10.1109/TMM.2021.3050092
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2621804404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9318556</ieee_id><sourcerecordid>2621804404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-47ed0b82b0e207a553ebb9bd9a117262eac53362bd89841bc752fb06a8d29b83</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz4mzX0n2WIsfhVbF9r7sJhNpTbt1N0H99ya0eJo5PO87zEPINYOUMdB3q8Ui5cBZKkABaH5CRkxLlgDk-Wm_Kw6J5gzOyUWMGwAmFeQjcj8NPkb6ZoNtGvtDJ22Lu3btd_QF228fPmntA122GNDT2dZ-IF12ewzJO0bfdAN5Sc5q20S8Os4xWT0-rKbPyfz1aTadzJNSCNEmMscKXMEdIIfcKiXQOe0qbRnLecbRlkqIjLuq0IVkrswVrx1ktqi4doUYk9tD7T74rw5jaza-C7v-ounTrAApQfYUHKhy-CtgbfZhvbXh1zAwgyjTizKDKHMU1UduDpE1Iv7jWrBCqUz8ASvLY04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621804404</pqid></control><display><type>article</type><title>Cross Parallax Attention Network for Stereo Image Super-Resolution</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Canqiang ; Qing, Chunmei ; Xu, Xiangmin ; Dickinson, Patrick</creator><creatorcontrib>Chen, Canqiang ; Qing, Chunmei ; Xu, Xiangmin ; Dickinson, Patrick</creatorcontrib><description>Stereo super-resolution (SR) aims to enhance the spatial resolution of one camera view using additional information from the other. Previous deep-learning-based stereo SR methods indeed improved the SR performance effectively by employing additional information, but they are unable to super-resolve stereo images where there are large disparities, or different types of epipolar lines. Moreover, in these methods, one model can only super-solve images of a particular view, and for one specific scale factor. This paper proposes a cross parallax attention stereo super-resolution network (CPASSRnet) which can perform stereo SR of multiple scale factors for both views, with a single model. To overcome the difficulties of large disparity and different types of epipolar lines, a cross parallax attention module (CPAM) is presented, which captures the global correspondence of additional information for each view, relative to the other. CPAM allows the two views to exchange additional information with each other according to the generated attention maps. Quantitative and qualitative results compared with the state of the arts illustrate the superiority of CPASSRnet. Ablation experiments demonstrate that the proposed components are effective and noise tests verify the robustness of CPASSRnet.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3050092</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ablation ; attention mechanism ; Cameras ; convolutional neural network ; Estimation ; Image enhancement ; Image resolution ; Parallax ; single model for multiple scaling factors ; Spatial resolution ; Stereo super-resolution ; Superresolution ; Task analysis ; Three-dimensional displays ; Visualization</subject><ispartof>IEEE transactions on multimedia, 2022, Vol.24, p.202-216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-47ed0b82b0e207a553ebb9bd9a117262eac53362bd89841bc752fb06a8d29b83</citedby><cites>FETCH-LOGICAL-c333t-47ed0b82b0e207a553ebb9bd9a117262eac53362bd89841bc752fb06a8d29b83</cites><orcidid>0000-0001-8388-8911 ; 0000-0003-4573-5820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9318556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4023,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9318556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Canqiang</creatorcontrib><creatorcontrib>Qing, Chunmei</creatorcontrib><creatorcontrib>Xu, Xiangmin</creatorcontrib><creatorcontrib>Dickinson, Patrick</creatorcontrib><title>Cross Parallax Attention Network for Stereo Image Super-Resolution</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Stereo super-resolution (SR) aims to enhance the spatial resolution of one camera view using additional information from the other. Previous deep-learning-based stereo SR methods indeed improved the SR performance effectively by employing additional information, but they are unable to super-resolve stereo images where there are large disparities, or different types of epipolar lines. Moreover, in these methods, one model can only super-solve images of a particular view, and for one specific scale factor. This paper proposes a cross parallax attention stereo super-resolution network (CPASSRnet) which can perform stereo SR of multiple scale factors for both views, with a single model. To overcome the difficulties of large disparity and different types of epipolar lines, a cross parallax attention module (CPAM) is presented, which captures the global correspondence of additional information for each view, relative to the other. CPAM allows the two views to exchange additional information with each other according to the generated attention maps. Quantitative and qualitative results compared with the state of the arts illustrate the superiority of CPASSRnet. Ablation experiments demonstrate that the proposed components are effective and noise tests verify the robustness of CPASSRnet.</description><subject>Ablation</subject><subject>attention mechanism</subject><subject>Cameras</subject><subject>convolutional neural network</subject><subject>Estimation</subject><subject>Image enhancement</subject><subject>Image resolution</subject><subject>Parallax</subject><subject>single model for multiple scaling factors</subject><subject>Spatial resolution</subject><subject>Stereo super-resolution</subject><subject>Superresolution</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz4mzX0n2WIsfhVbF9r7sJhNpTbt1N0H99ya0eJo5PO87zEPINYOUMdB3q8Ui5cBZKkABaH5CRkxLlgDk-Wm_Kw6J5gzOyUWMGwAmFeQjcj8NPkb6ZoNtGvtDJ22Lu3btd_QF228fPmntA122GNDT2dZ-IF12ewzJO0bfdAN5Sc5q20S8Os4xWT0-rKbPyfz1aTadzJNSCNEmMscKXMEdIIfcKiXQOe0qbRnLecbRlkqIjLuq0IVkrswVrx1ktqi4doUYk9tD7T74rw5jaza-C7v-ounTrAApQfYUHKhy-CtgbfZhvbXh1zAwgyjTizKDKHMU1UduDpE1Iv7jWrBCqUz8ASvLY04</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chen, Canqiang</creator><creator>Qing, Chunmei</creator><creator>Xu, Xiangmin</creator><creator>Dickinson, Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8388-8911</orcidid><orcidid>https://orcid.org/0000-0003-4573-5820</orcidid></search><sort><creationdate>2022</creationdate><title>Cross Parallax Attention Network for Stereo Image Super-Resolution</title><author>Chen, Canqiang ; Qing, Chunmei ; Xu, Xiangmin ; Dickinson, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-47ed0b82b0e207a553ebb9bd9a117262eac53362bd89841bc752fb06a8d29b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>attention mechanism</topic><topic>Cameras</topic><topic>convolutional neural network</topic><topic>Estimation</topic><topic>Image enhancement</topic><topic>Image resolution</topic><topic>Parallax</topic><topic>single model for multiple scaling factors</topic><topic>Spatial resolution</topic><topic>Stereo super-resolution</topic><topic>Superresolution</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Canqiang</creatorcontrib><creatorcontrib>Qing, Chunmei</creatorcontrib><creatorcontrib>Xu, Xiangmin</creatorcontrib><creatorcontrib>Dickinson, Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Canqiang</au><au>Qing, Chunmei</au><au>Xu, Xiangmin</au><au>Dickinson, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross Parallax Attention Network for Stereo Image Super-Resolution</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2022</date><risdate>2022</risdate><volume>24</volume><spage>202</spage><epage>216</epage><pages>202-216</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Stereo super-resolution (SR) aims to enhance the spatial resolution of one camera view using additional information from the other. Previous deep-learning-based stereo SR methods indeed improved the SR performance effectively by employing additional information, but they are unable to super-resolve stereo images where there are large disparities, or different types of epipolar lines. Moreover, in these methods, one model can only super-solve images of a particular view, and for one specific scale factor. This paper proposes a cross parallax attention stereo super-resolution network (CPASSRnet) which can perform stereo SR of multiple scale factors for both views, with a single model. To overcome the difficulties of large disparity and different types of epipolar lines, a cross parallax attention module (CPAM) is presented, which captures the global correspondence of additional information for each view, relative to the other. CPAM allows the two views to exchange additional information with each other according to the generated attention maps. Quantitative and qualitative results compared with the state of the arts illustrate the superiority of CPASSRnet. Ablation experiments demonstrate that the proposed components are effective and noise tests verify the robustness of CPASSRnet.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3050092</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8388-8911</orcidid><orcidid>https://orcid.org/0000-0003-4573-5820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2022, Vol.24, p.202-216
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_2621804404
source IEEE Electronic Library (IEL)
subjects Ablation
attention mechanism
Cameras
convolutional neural network
Estimation
Image enhancement
Image resolution
Parallax
single model for multiple scaling factors
Spatial resolution
Stereo super-resolution
Superresolution
Task analysis
Three-dimensional displays
Visualization
title Cross Parallax Attention Network for Stereo Image Super-Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross%20Parallax%20Attention%20Network%20for%20Stereo%20Image%20Super-Resolution&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Chen,%20Canqiang&rft.date=2022&rft.volume=24&rft.spage=202&rft.epage=216&rft.pages=202-216&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3050092&rft_dat=%3Cproquest_RIE%3E2621804404%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621804404&rft_id=info:pmid/&rft_ieee_id=9318556&rfr_iscdi=true