Cross Parallax Attention Network for Stereo Image Super-Resolution
Stereo super-resolution (SR) aims to enhance the spatial resolution of one camera view using additional information from the other. Previous deep-learning-based stereo SR methods indeed improved the SR performance effectively by employing additional information, but they are unable to super-resolve...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2022, Vol.24, p.202-216 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | |
container_start_page | 202 |
container_title | IEEE transactions on multimedia |
container_volume | 24 |
creator | Chen, Canqiang Qing, Chunmei Xu, Xiangmin Dickinson, Patrick |
description | Stereo super-resolution (SR) aims to enhance the spatial resolution of one camera view using additional information from the other. Previous deep-learning-based stereo SR methods indeed improved the SR performance effectively by employing additional information, but they are unable to super-resolve stereo images where there are large disparities, or different types of epipolar lines. Moreover, in these methods, one model can only super-solve images of a particular view, and for one specific scale factor. This paper proposes a cross parallax attention stereo super-resolution network (CPASSRnet) which can perform stereo SR of multiple scale factors for both views, with a single model. To overcome the difficulties of large disparity and different types of epipolar lines, a cross parallax attention module (CPAM) is presented, which captures the global correspondence of additional information for each view, relative to the other. CPAM allows the two views to exchange additional information with each other according to the generated attention maps. Quantitative and qualitative results compared with the state of the arts illustrate the superiority of CPASSRnet. Ablation experiments demonstrate that the proposed components are effective and noise tests verify the robustness of CPASSRnet. |
doi_str_mv | 10.1109/TMM.2021.3050092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2621804404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9318556</ieee_id><sourcerecordid>2621804404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-47ed0b82b0e207a553ebb9bd9a117262eac53362bd89841bc752fb06a8d29b83</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz4mzX0n2WIsfhVbF9r7sJhNpTbt1N0H99ya0eJo5PO87zEPINYOUMdB3q8Ui5cBZKkABaH5CRkxLlgDk-Wm_Kw6J5gzOyUWMGwAmFeQjcj8NPkb6ZoNtGvtDJ22Lu3btd_QF228fPmntA122GNDT2dZ-IF12ewzJO0bfdAN5Sc5q20S8Os4xWT0-rKbPyfz1aTadzJNSCNEmMscKXMEdIIfcKiXQOe0qbRnLecbRlkqIjLuq0IVkrswVrx1ktqi4doUYk9tD7T74rw5jaza-C7v-ounTrAApQfYUHKhy-CtgbfZhvbXh1zAwgyjTizKDKHMU1UduDpE1Iv7jWrBCqUz8ASvLY04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621804404</pqid></control><display><type>article</type><title>Cross Parallax Attention Network for Stereo Image Super-Resolution</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Canqiang ; Qing, Chunmei ; Xu, Xiangmin ; Dickinson, Patrick</creator><creatorcontrib>Chen, Canqiang ; Qing, Chunmei ; Xu, Xiangmin ; Dickinson, Patrick</creatorcontrib><description>Stereo super-resolution (SR) aims to enhance the spatial resolution of one camera view using additional information from the other. Previous deep-learning-based stereo SR methods indeed improved the SR performance effectively by employing additional information, but they are unable to super-resolve stereo images where there are large disparities, or different types of epipolar lines. Moreover, in these methods, one model can only super-solve images of a particular view, and for one specific scale factor. This paper proposes a cross parallax attention stereo super-resolution network (CPASSRnet) which can perform stereo SR of multiple scale factors for both views, with a single model. To overcome the difficulties of large disparity and different types of epipolar lines, a cross parallax attention module (CPAM) is presented, which captures the global correspondence of additional information for each view, relative to the other. CPAM allows the two views to exchange additional information with each other according to the generated attention maps. Quantitative and qualitative results compared with the state of the arts illustrate the superiority of CPASSRnet. Ablation experiments demonstrate that the proposed components are effective and noise tests verify the robustness of CPASSRnet.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3050092</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ablation ; attention mechanism ; Cameras ; convolutional neural network ; Estimation ; Image enhancement ; Image resolution ; Parallax ; single model for multiple scaling factors ; Spatial resolution ; Stereo super-resolution ; Superresolution ; Task analysis ; Three-dimensional displays ; Visualization</subject><ispartof>IEEE transactions on multimedia, 2022, Vol.24, p.202-216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-47ed0b82b0e207a553ebb9bd9a117262eac53362bd89841bc752fb06a8d29b83</citedby><cites>FETCH-LOGICAL-c333t-47ed0b82b0e207a553ebb9bd9a117262eac53362bd89841bc752fb06a8d29b83</cites><orcidid>0000-0001-8388-8911 ; 0000-0003-4573-5820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9318556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4023,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9318556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Canqiang</creatorcontrib><creatorcontrib>Qing, Chunmei</creatorcontrib><creatorcontrib>Xu, Xiangmin</creatorcontrib><creatorcontrib>Dickinson, Patrick</creatorcontrib><title>Cross Parallax Attention Network for Stereo Image Super-Resolution</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Stereo super-resolution (SR) aims to enhance the spatial resolution of one camera view using additional information from the other. Previous deep-learning-based stereo SR methods indeed improved the SR performance effectively by employing additional information, but they are unable to super-resolve stereo images where there are large disparities, or different types of epipolar lines. Moreover, in these methods, one model can only super-solve images of a particular view, and for one specific scale factor. This paper proposes a cross parallax attention stereo super-resolution network (CPASSRnet) which can perform stereo SR of multiple scale factors for both views, with a single model. To overcome the difficulties of large disparity and different types of epipolar lines, a cross parallax attention module (CPAM) is presented, which captures the global correspondence of additional information for each view, relative to the other. CPAM allows the two views to exchange additional information with each other according to the generated attention maps. Quantitative and qualitative results compared with the state of the arts illustrate the superiority of CPASSRnet. Ablation experiments demonstrate that the proposed components are effective and noise tests verify the robustness of CPASSRnet.</description><subject>Ablation</subject><subject>attention mechanism</subject><subject>Cameras</subject><subject>convolutional neural network</subject><subject>Estimation</subject><subject>Image enhancement</subject><subject>Image resolution</subject><subject>Parallax</subject><subject>single model for multiple scaling factors</subject><subject>Spatial resolution</subject><subject>Stereo super-resolution</subject><subject>Superresolution</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz4mzX0n2WIsfhVbF9r7sJhNpTbt1N0H99ya0eJo5PO87zEPINYOUMdB3q8Ui5cBZKkABaH5CRkxLlgDk-Wm_Kw6J5gzOyUWMGwAmFeQjcj8NPkb6ZoNtGvtDJ22Lu3btd_QF228fPmntA122GNDT2dZ-IF12ewzJO0bfdAN5Sc5q20S8Os4xWT0-rKbPyfz1aTadzJNSCNEmMscKXMEdIIfcKiXQOe0qbRnLecbRlkqIjLuq0IVkrswVrx1ktqi4doUYk9tD7T74rw5jaza-C7v-ounTrAApQfYUHKhy-CtgbfZhvbXh1zAwgyjTizKDKHMU1UduDpE1Iv7jWrBCqUz8ASvLY04</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chen, Canqiang</creator><creator>Qing, Chunmei</creator><creator>Xu, Xiangmin</creator><creator>Dickinson, Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8388-8911</orcidid><orcidid>https://orcid.org/0000-0003-4573-5820</orcidid></search><sort><creationdate>2022</creationdate><title>Cross Parallax Attention Network for Stereo Image Super-Resolution</title><author>Chen, Canqiang ; Qing, Chunmei ; Xu, Xiangmin ; Dickinson, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-47ed0b82b0e207a553ebb9bd9a117262eac53362bd89841bc752fb06a8d29b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>attention mechanism</topic><topic>Cameras</topic><topic>convolutional neural network</topic><topic>Estimation</topic><topic>Image enhancement</topic><topic>Image resolution</topic><topic>Parallax</topic><topic>single model for multiple scaling factors</topic><topic>Spatial resolution</topic><topic>Stereo super-resolution</topic><topic>Superresolution</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Canqiang</creatorcontrib><creatorcontrib>Qing, Chunmei</creatorcontrib><creatorcontrib>Xu, Xiangmin</creatorcontrib><creatorcontrib>Dickinson, Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Canqiang</au><au>Qing, Chunmei</au><au>Xu, Xiangmin</au><au>Dickinson, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross Parallax Attention Network for Stereo Image Super-Resolution</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2022</date><risdate>2022</risdate><volume>24</volume><spage>202</spage><epage>216</epage><pages>202-216</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Stereo super-resolution (SR) aims to enhance the spatial resolution of one camera view using additional information from the other. Previous deep-learning-based stereo SR methods indeed improved the SR performance effectively by employing additional information, but they are unable to super-resolve stereo images where there are large disparities, or different types of epipolar lines. Moreover, in these methods, one model can only super-solve images of a particular view, and for one specific scale factor. This paper proposes a cross parallax attention stereo super-resolution network (CPASSRnet) which can perform stereo SR of multiple scale factors for both views, with a single model. To overcome the difficulties of large disparity and different types of epipolar lines, a cross parallax attention module (CPAM) is presented, which captures the global correspondence of additional information for each view, relative to the other. CPAM allows the two views to exchange additional information with each other according to the generated attention maps. Quantitative and qualitative results compared with the state of the arts illustrate the superiority of CPASSRnet. Ablation experiments demonstrate that the proposed components are effective and noise tests verify the robustness of CPASSRnet.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3050092</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8388-8911</orcidid><orcidid>https://orcid.org/0000-0003-4573-5820</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2022, Vol.24, p.202-216 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2621804404 |
source | IEEE Electronic Library (IEL) |
subjects | Ablation attention mechanism Cameras convolutional neural network Estimation Image enhancement Image resolution Parallax single model for multiple scaling factors Spatial resolution Stereo super-resolution Superresolution Task analysis Three-dimensional displays Visualization |
title | Cross Parallax Attention Network for Stereo Image Super-Resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross%20Parallax%20Attention%20Network%20for%20Stereo%20Image%20Super-Resolution&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Chen,%20Canqiang&rft.date=2022&rft.volume=24&rft.spage=202&rft.epage=216&rft.pages=202-216&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3050092&rft_dat=%3Cproquest_RIE%3E2621804404%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621804404&rft_id=info:pmid/&rft_ieee_id=9318556&rfr_iscdi=true |