Semi-conducting cyclic copolymers of acetylene and propyne
Polyacetylene (PA) exhibits conductivities comparable to metals after doping, yet the extremely low solubility of PA limits its processing and utility. Introducing pendent groups can alter the properties of PA. Copolymerizing acetylene and propyne using Zieglar-Natta type catalysts affords linear po...
Gespeichert in:
Veröffentlicht in: | Reactive & functional polymers 2021-12, Vol.169, p.105088, Article 105088 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105088 |
container_title | Reactive & functional polymers |
container_volume | 169 |
creator | Miao, Zhihui Esper, Alec M. Nadif, Soufiane S. Gonsales, Stella A. Sumerlin, Brent S. Veige, Adam S. |
description | Polyacetylene (PA) exhibits conductivities comparable to metals after doping, yet the extremely low solubility of PA limits its processing and utility. Introducing pendent groups can alter the properties of PA. Copolymerizing acetylene and propyne using Zieglar-Natta type catalysts affords linear poly(acetylene-co-propyne) as free-standing films. However, this process requires grams of catalysts and extensive workup. Cyclic polyacetylene is a unique topological isomer of linear polyacetylene. Herein, we report a facile synthesis of cyclic poly(acetylene-co-propyne) as thin, flexible films with extremely low catalyst loading (milligrams) and easy purification. Altering the feed ratio of acetylene and propyne produces copolymers with different acetylene/propyne incorporations. The films exhibit similar conductivities as linear copolymers after doping. The soluble portions of different cyclic copolymers exhibit low acetylene incorporation. TGA analysis reveals the cyclic copolymers are less thermally stable than cyclic PA, with the stability dependent on the ratio of acetylene and propyne incorporation.
[Display omitted]
•Semiconducting cyclic copolymer synthesis.•Lustrous free standing films of cyclic polymer.•Low catalysts loading and efficient synthesis of semiconducting polymer.•Gaseous synthesis of semi-conducting cyclic copolymer. |
doi_str_mv | 10.1016/j.reactfunctpolym.2021.105088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621595489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1381514821002807</els_id><sourcerecordid>2621595489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-de1fc3b6fce33ff4315f8ae209262fc43f8d01088226ef4a26e01a5a73d10a823</originalsourceid><addsrcrecordid>eNqNUMFKxDAQDaLguvoPBfHYNZO03azgQRZdhQUPKngLcTqRlG5Tk67QvzdaT568zAy8N-_NPMYugC-AQ3XZLAIZHOy-w6H37bhbCC4gYSVX6oDNQC1lDlX1ephmqSAvoVDH7CTGhnNYJmTGrp5o53L0Xb3HwXXvGY7YOszQ_yhSiJm3mUEaxpY6ykxXZ33w_djRKTuypo109tvn7OXu9nl9n28fNw_rm22OsoIhrwksyrfKIklpbSGhtMqQ4CtRCYuFtKrmkC4WoiJbmFQ5mNIsZQ3cKCHn7HzSTb4fe4qDbvw-dMlSJwUoV2WhVol1PbEw-BgDWd0HtzNh1MD1d1y60X_i0t9x6SmutL-Z9im98uko6IiOOqTaBcJB1979U-kLC619kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621595489</pqid></control><display><type>article</type><title>Semi-conducting cyclic copolymers of acetylene and propyne</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Miao, Zhihui ; Esper, Alec M. ; Nadif, Soufiane S. ; Gonsales, Stella A. ; Sumerlin, Brent S. ; Veige, Adam S.</creator><creatorcontrib>Miao, Zhihui ; Esper, Alec M. ; Nadif, Soufiane S. ; Gonsales, Stella A. ; Sumerlin, Brent S. ; Veige, Adam S.</creatorcontrib><description>Polyacetylene (PA) exhibits conductivities comparable to metals after doping, yet the extremely low solubility of PA limits its processing and utility. Introducing pendent groups can alter the properties of PA. Copolymerizing acetylene and propyne using Zieglar-Natta type catalysts affords linear poly(acetylene-co-propyne) as free-standing films. However, this process requires grams of catalysts and extensive workup. Cyclic polyacetylene is a unique topological isomer of linear polyacetylene. Herein, we report a facile synthesis of cyclic poly(acetylene-co-propyne) as thin, flexible films with extremely low catalyst loading (milligrams) and easy purification. Altering the feed ratio of acetylene and propyne produces copolymers with different acetylene/propyne incorporations. The films exhibit similar conductivities as linear copolymers after doping. The soluble portions of different cyclic copolymers exhibit low acetylene incorporation. TGA analysis reveals the cyclic copolymers are less thermally stable than cyclic PA, with the stability dependent on the ratio of acetylene and propyne incorporation.
[Display omitted]
•Semiconducting cyclic copolymer synthesis.•Lustrous free standing films of cyclic polymer.•Low catalysts loading and efficient synthesis of semiconducting polymer.•Gaseous synthesis of semi-conducting cyclic copolymer.</description><identifier>ISSN: 1381-5148</identifier><identifier>EISSN: 1873-166X</identifier><identifier>DOI: 10.1016/j.reactfunctpolym.2021.105088</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acetylene ; Catalysts ; Chemical synthesis ; Conductive polymers ; Copolymer ; Copolymerization ; Copolymers ; Cyclic polymer ; Doping ; Polyacetylene ; Polymerization ; Polypropyne ; Semi-conducting ; Thermal stability ; Thin films</subject><ispartof>Reactive & functional polymers, 2021-12, Vol.169, p.105088, Article 105088</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-de1fc3b6fce33ff4315f8ae209262fc43f8d01088226ef4a26e01a5a73d10a823</citedby><cites>FETCH-LOGICAL-c361t-de1fc3b6fce33ff4315f8ae209262fc43f8d01088226ef4a26e01a5a73d10a823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.reactfunctpolym.2021.105088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Miao, Zhihui</creatorcontrib><creatorcontrib>Esper, Alec M.</creatorcontrib><creatorcontrib>Nadif, Soufiane S.</creatorcontrib><creatorcontrib>Gonsales, Stella A.</creatorcontrib><creatorcontrib>Sumerlin, Brent S.</creatorcontrib><creatorcontrib>Veige, Adam S.</creatorcontrib><title>Semi-conducting cyclic copolymers of acetylene and propyne</title><title>Reactive & functional polymers</title><description>Polyacetylene (PA) exhibits conductivities comparable to metals after doping, yet the extremely low solubility of PA limits its processing and utility. Introducing pendent groups can alter the properties of PA. Copolymerizing acetylene and propyne using Zieglar-Natta type catalysts affords linear poly(acetylene-co-propyne) as free-standing films. However, this process requires grams of catalysts and extensive workup. Cyclic polyacetylene is a unique topological isomer of linear polyacetylene. Herein, we report a facile synthesis of cyclic poly(acetylene-co-propyne) as thin, flexible films with extremely low catalyst loading (milligrams) and easy purification. Altering the feed ratio of acetylene and propyne produces copolymers with different acetylene/propyne incorporations. The films exhibit similar conductivities as linear copolymers after doping. The soluble portions of different cyclic copolymers exhibit low acetylene incorporation. TGA analysis reveals the cyclic copolymers are less thermally stable than cyclic PA, with the stability dependent on the ratio of acetylene and propyne incorporation.
[Display omitted]
•Semiconducting cyclic copolymer synthesis.•Lustrous free standing films of cyclic polymer.•Low catalysts loading and efficient synthesis of semiconducting polymer.•Gaseous synthesis of semi-conducting cyclic copolymer.</description><subject>Acetylene</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Conductive polymers</subject><subject>Copolymer</subject><subject>Copolymerization</subject><subject>Copolymers</subject><subject>Cyclic polymer</subject><subject>Doping</subject><subject>Polyacetylene</subject><subject>Polymerization</subject><subject>Polypropyne</subject><subject>Semi-conducting</subject><subject>Thermal stability</subject><subject>Thin films</subject><issn>1381-5148</issn><issn>1873-166X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUMFKxDAQDaLguvoPBfHYNZO03azgQRZdhQUPKngLcTqRlG5Tk67QvzdaT568zAy8N-_NPMYugC-AQ3XZLAIZHOy-w6H37bhbCC4gYSVX6oDNQC1lDlX1ephmqSAvoVDH7CTGhnNYJmTGrp5o53L0Xb3HwXXvGY7YOszQ_yhSiJm3mUEaxpY6ykxXZ33w_djRKTuypo109tvn7OXu9nl9n28fNw_rm22OsoIhrwksyrfKIklpbSGhtMqQ4CtRCYuFtKrmkC4WoiJbmFQ5mNIsZQ3cKCHn7HzSTb4fe4qDbvw-dMlSJwUoV2WhVol1PbEw-BgDWd0HtzNh1MD1d1y60X_i0t9x6SmutL-Z9im98uko6IiOOqTaBcJB1979U-kLC619kw</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Miao, Zhihui</creator><creator>Esper, Alec M.</creator><creator>Nadif, Soufiane S.</creator><creator>Gonsales, Stella A.</creator><creator>Sumerlin, Brent S.</creator><creator>Veige, Adam S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202112</creationdate><title>Semi-conducting cyclic copolymers of acetylene and propyne</title><author>Miao, Zhihui ; Esper, Alec M. ; Nadif, Soufiane S. ; Gonsales, Stella A. ; Sumerlin, Brent S. ; Veige, Adam S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-de1fc3b6fce33ff4315f8ae209262fc43f8d01088226ef4a26e01a5a73d10a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetylene</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Conductive polymers</topic><topic>Copolymer</topic><topic>Copolymerization</topic><topic>Copolymers</topic><topic>Cyclic polymer</topic><topic>Doping</topic><topic>Polyacetylene</topic><topic>Polymerization</topic><topic>Polypropyne</topic><topic>Semi-conducting</topic><topic>Thermal stability</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Zhihui</creatorcontrib><creatorcontrib>Esper, Alec M.</creatorcontrib><creatorcontrib>Nadif, Soufiane S.</creatorcontrib><creatorcontrib>Gonsales, Stella A.</creatorcontrib><creatorcontrib>Sumerlin, Brent S.</creatorcontrib><creatorcontrib>Veige, Adam S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Reactive & functional polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Zhihui</au><au>Esper, Alec M.</au><au>Nadif, Soufiane S.</au><au>Gonsales, Stella A.</au><au>Sumerlin, Brent S.</au><au>Veige, Adam S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-conducting cyclic copolymers of acetylene and propyne</atitle><jtitle>Reactive & functional polymers</jtitle><date>2021-12</date><risdate>2021</risdate><volume>169</volume><spage>105088</spage><pages>105088-</pages><artnum>105088</artnum><issn>1381-5148</issn><eissn>1873-166X</eissn><abstract>Polyacetylene (PA) exhibits conductivities comparable to metals after doping, yet the extremely low solubility of PA limits its processing and utility. Introducing pendent groups can alter the properties of PA. Copolymerizing acetylene and propyne using Zieglar-Natta type catalysts affords linear poly(acetylene-co-propyne) as free-standing films. However, this process requires grams of catalysts and extensive workup. Cyclic polyacetylene is a unique topological isomer of linear polyacetylene. Herein, we report a facile synthesis of cyclic poly(acetylene-co-propyne) as thin, flexible films with extremely low catalyst loading (milligrams) and easy purification. Altering the feed ratio of acetylene and propyne produces copolymers with different acetylene/propyne incorporations. The films exhibit similar conductivities as linear copolymers after doping. The soluble portions of different cyclic copolymers exhibit low acetylene incorporation. TGA analysis reveals the cyclic copolymers are less thermally stable than cyclic PA, with the stability dependent on the ratio of acetylene and propyne incorporation.
[Display omitted]
•Semiconducting cyclic copolymer synthesis.•Lustrous free standing films of cyclic polymer.•Low catalysts loading and efficient synthesis of semiconducting polymer.•Gaseous synthesis of semi-conducting cyclic copolymer.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.reactfunctpolym.2021.105088</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1381-5148 |
ispartof | Reactive & functional polymers, 2021-12, Vol.169, p.105088, Article 105088 |
issn | 1381-5148 1873-166X |
language | eng |
recordid | cdi_proquest_journals_2621595489 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Acetylene Catalysts Chemical synthesis Conductive polymers Copolymer Copolymerization Copolymers Cyclic polymer Doping Polyacetylene Polymerization Polypropyne Semi-conducting Thermal stability Thin films |
title | Semi-conducting cyclic copolymers of acetylene and propyne |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-conducting%20cyclic%20copolymers%20of%20acetylene%20and%20propyne&rft.jtitle=Reactive%20&%20functional%20polymers&rft.au=Miao,%20Zhihui&rft.date=2021-12&rft.volume=169&rft.spage=105088&rft.pages=105088-&rft.artnum=105088&rft.issn=1381-5148&rft.eissn=1873-166X&rft_id=info:doi/10.1016/j.reactfunctpolym.2021.105088&rft_dat=%3Cproquest_cross%3E2621595489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621595489&rft_id=info:pmid/&rft_els_id=S1381514821002807&rfr_iscdi=true |