Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations
In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of...
Gespeichert in:
Veröffentlicht in: | Indagationes mathematicae 2021-12, Vol.32 (6), p.1372-1411 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1411 |
---|---|
container_issue | 6 |
container_start_page | 1372 |
container_title | Indagationes mathematicae |
container_volume | 32 |
creator | Stokman, Jasper V. |
description | In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of a consistent system of first order differential operators on a, generalising asymptotic boundary Knizhnik–Zamolodchikov–Bernard (KZB) equations.
The recipe involves folding and contracting a-invariant and θ-twisted symmetric classical dynamical r-matrices along an involutive automorphism θ. In case of the universal enveloping algebra of a simple Lie algebra g we determine the subclass of Schiffmann’s classical dynamical r-matrices which are a-invariant and θ-twisted.
The paper starts with a section highlighting the connections between asymptotic (boundary) KZB equations, representation theory of semisimple Lie groups, and integrable quantum field theories. |
doi_str_mv | 10.1016/j.indag.2021.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621590198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019357721000628</els_id><sourcerecordid>2621590198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-bb75dfba10ecb4b7c07a51869b48fa8c7bbe02f00bc3978ee5ca6467b85a67a73</originalsourceid><addsrcrecordid>eNp9kL9OwzAQxi0EEqXwBCyRmBPOSWMnAwNUFJAqscDAZJ0dp3KU2q2dINh4B96QJ8FtmZnuj-777u5HyCWFjAJl111mbIOrLIecZsAzgOKITGjF85RRgGMyAaB1WpScn5KzELpYcsjZhOiF6xvdJGibRDk7eFRDLIPrx8E4GxLXxv646WNT9RiCUdgnzafF9T57Q7v6-fq-w49B-72L122v1U6c6O2Ie5dzctJiH_TFX5yS18X9y_wxXT4_PM1vl6kqOBtSKXnZtBIpaCVnkivgWNKK1XJWtVgpLqWGvAWQqqh5pXWpkM0Yl1WJjCMvpuTq4LvxbjvqMIjOjd7GlSJnOS3rSKGKU8VhSnkXQrxXbLxZo_8UFMSOp-jEnqfY8RTAReQZVTcHlY4PvBvtRVBGW6Ub4-O_onHmX_0vi02CXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621590198</pqid></control><display><type>article</type><title>Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Stokman, Jasper V.</creator><creatorcontrib>Stokman, Jasper V.</creatorcontrib><description>In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of a consistent system of first order differential operators on a, generalising asymptotic boundary Knizhnik–Zamolodchikov–Bernard (KZB) equations.
The recipe involves folding and contracting a-invariant and θ-twisted symmetric classical dynamical r-matrices along an involutive automorphism θ. In case of the universal enveloping algebra of a simple Lie algebra g we determine the subclass of Schiffmann’s classical dynamical r-matrices which are a-invariant and θ-twisted.
The paper starts with a section highlighting the connections between asymptotic (boundary) KZB equations, representation theory of semisimple Lie groups, and integrable quantum field theories.</description><identifier>ISSN: 0019-3577</identifier><identifier>EISSN: 1872-6100</identifier><identifier>DOI: 10.1016/j.indag.2021.07.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Asymptotic properties ; Automorphisms ; Boundary KZB equations ; Concrete construction ; Differential equations ; Invariants ; Lie groups ; Mathematical analysis ; Matrices (mathematics) ; Matrix algebra ; Meromorphic functions ; Operators (mathematics) ; Quantum theory ; Reflection equations ; Spherical functions ; Yang–Baxter equations</subject><ispartof>Indagationes mathematicae, 2021-12, Vol.32 (6), p.1372-1411</ispartof><rights>2021 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-bb75dfba10ecb4b7c07a51869b48fa8c7bbe02f00bc3978ee5ca6467b85a67a73</citedby><cites>FETCH-LOGICAL-c376t-bb75dfba10ecb4b7c07a51869b48fa8c7bbe02f00bc3978ee5ca6467b85a67a73</cites><orcidid>0000-0003-4751-4431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.indag.2021.07.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Stokman, Jasper V.</creatorcontrib><title>Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations</title><title>Indagationes mathematicae</title><description>In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of a consistent system of first order differential operators on a, generalising asymptotic boundary Knizhnik–Zamolodchikov–Bernard (KZB) equations.
The recipe involves folding and contracting a-invariant and θ-twisted symmetric classical dynamical r-matrices along an involutive automorphism θ. In case of the universal enveloping algebra of a simple Lie algebra g we determine the subclass of Schiffmann’s classical dynamical r-matrices which are a-invariant and θ-twisted.
The paper starts with a section highlighting the connections between asymptotic (boundary) KZB equations, representation theory of semisimple Lie groups, and integrable quantum field theories.</description><subject>Algebra</subject><subject>Asymptotic properties</subject><subject>Automorphisms</subject><subject>Boundary KZB equations</subject><subject>Concrete construction</subject><subject>Differential equations</subject><subject>Invariants</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Matrix algebra</subject><subject>Meromorphic functions</subject><subject>Operators (mathematics)</subject><subject>Quantum theory</subject><subject>Reflection equations</subject><subject>Spherical functions</subject><subject>Yang–Baxter equations</subject><issn>0019-3577</issn><issn>1872-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQxi0EEqXwBCyRmBPOSWMnAwNUFJAqscDAZJ0dp3KU2q2dINh4B96QJ8FtmZnuj-777u5HyCWFjAJl111mbIOrLIecZsAzgOKITGjF85RRgGMyAaB1WpScn5KzELpYcsjZhOiF6xvdJGibRDk7eFRDLIPrx8E4GxLXxv646WNT9RiCUdgnzafF9T57Q7v6-fq-w49B-72L122v1U6c6O2Ie5dzctJiH_TFX5yS18X9y_wxXT4_PM1vl6kqOBtSKXnZtBIpaCVnkivgWNKK1XJWtVgpLqWGvAWQqqh5pXWpkM0Yl1WJjCMvpuTq4LvxbjvqMIjOjd7GlSJnOS3rSKGKU8VhSnkXQrxXbLxZo_8UFMSOp-jEnqfY8RTAReQZVTcHlY4PvBvtRVBGW6Ub4-O_onHmX_0vi02CXw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Stokman, Jasper V.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4751-4431</orcidid></search><sort><creationdate>20211201</creationdate><title>Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations</title><author>Stokman, Jasper V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-bb75dfba10ecb4b7c07a51869b48fa8c7bbe02f00bc3978ee5ca6467b85a67a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Asymptotic properties</topic><topic>Automorphisms</topic><topic>Boundary KZB equations</topic><topic>Concrete construction</topic><topic>Differential equations</topic><topic>Invariants</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Matrix algebra</topic><topic>Meromorphic functions</topic><topic>Operators (mathematics)</topic><topic>Quantum theory</topic><topic>Reflection equations</topic><topic>Spherical functions</topic><topic>Yang–Baxter equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stokman, Jasper V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Indagationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stokman, Jasper V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations</atitle><jtitle>Indagationes mathematicae</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>32</volume><issue>6</issue><spage>1372</spage><epage>1411</epage><pages>1372-1411</pages><issn>0019-3577</issn><eissn>1872-6100</eissn><abstract>In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of a consistent system of first order differential operators on a, generalising asymptotic boundary Knizhnik–Zamolodchikov–Bernard (KZB) equations.
The recipe involves folding and contracting a-invariant and θ-twisted symmetric classical dynamical r-matrices along an involutive automorphism θ. In case of the universal enveloping algebra of a simple Lie algebra g we determine the subclass of Schiffmann’s classical dynamical r-matrices which are a-invariant and θ-twisted.
The paper starts with a section highlighting the connections between asymptotic (boundary) KZB equations, representation theory of semisimple Lie groups, and integrable quantum field theories.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.indag.2021.07.003</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0003-4751-4431</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-3577 |
ispartof | Indagationes mathematicae, 2021-12, Vol.32 (6), p.1372-1411 |
issn | 0019-3577 1872-6100 |
language | eng |
recordid | cdi_proquest_journals_2621590198 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algebra Asymptotic properties Automorphisms Boundary KZB equations Concrete construction Differential equations Invariants Lie groups Mathematical analysis Matrices (mathematics) Matrix algebra Meromorphic functions Operators (mathematics) Quantum theory Reflection equations Spherical functions Yang–Baxter equations |
title | Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folded%20and%20contracted%20solutions%20of%20coupled%20classical%20dynamical%20Yang%E2%80%93Baxter%20and%20reflection%20equations&rft.jtitle=Indagationes%20mathematicae&rft.au=Stokman,%20Jasper%20V.&rft.date=2021-12-01&rft.volume=32&rft.issue=6&rft.spage=1372&rft.epage=1411&rft.pages=1372-1411&rft.issn=0019-3577&rft.eissn=1872-6100&rft_id=info:doi/10.1016/j.indag.2021.07.003&rft_dat=%3Cproquest_cross%3E2621590198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621590198&rft_id=info:pmid/&rft_els_id=S0019357721000628&rfr_iscdi=true |