Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations

In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indagationes mathematicae 2021-12, Vol.32 (6), p.1372-1411
1. Verfasser: Stokman, Jasper V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1411
container_issue 6
container_start_page 1372
container_title Indagationes mathematicae
container_volume 32
creator Stokman, Jasper V.
description In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of a consistent system of first order differential operators on a, generalising asymptotic boundary Knizhnik–Zamolodchikov–Bernard (KZB) equations. The recipe involves folding and contracting a-invariant and θ-twisted symmetric classical dynamical r-matrices along an involutive automorphism θ. In case of the universal enveloping algebra of a simple Lie algebra g we determine the subclass of Schiffmann’s classical dynamical r-matrices which are a-invariant and θ-twisted. The paper starts with a section highlighting the connections between asymptotic (boundary) KZB equations, representation theory of semisimple Lie groups, and integrable quantum field theories.
doi_str_mv 10.1016/j.indag.2021.07.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621590198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019357721000628</els_id><sourcerecordid>2621590198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-bb75dfba10ecb4b7c07a51869b48fa8c7bbe02f00bc3978ee5ca6467b85a67a73</originalsourceid><addsrcrecordid>eNp9kL9OwzAQxi0EEqXwBCyRmBPOSWMnAwNUFJAqscDAZJ0dp3KU2q2dINh4B96QJ8FtmZnuj-777u5HyCWFjAJl111mbIOrLIecZsAzgOKITGjF85RRgGMyAaB1WpScn5KzELpYcsjZhOiF6xvdJGibRDk7eFRDLIPrx8E4GxLXxv646WNT9RiCUdgnzafF9T57Q7v6-fq-w49B-72L122v1U6c6O2Ie5dzctJiH_TFX5yS18X9y_wxXT4_PM1vl6kqOBtSKXnZtBIpaCVnkivgWNKK1XJWtVgpLqWGvAWQqqh5pXWpkM0Yl1WJjCMvpuTq4LvxbjvqMIjOjd7GlSJnOS3rSKGKU8VhSnkXQrxXbLxZo_8UFMSOp-jEnqfY8RTAReQZVTcHlY4PvBvtRVBGW6Ub4-O_onHmX_0vi02CXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621590198</pqid></control><display><type>article</type><title>Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Stokman, Jasper V.</creator><creatorcontrib>Stokman, Jasper V.</creatorcontrib><description>In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of a consistent system of first order differential operators on a, generalising asymptotic boundary Knizhnik–Zamolodchikov–Bernard (KZB) equations. The recipe involves folding and contracting a-invariant and θ-twisted symmetric classical dynamical r-matrices along an involutive automorphism θ. In case of the universal enveloping algebra of a simple Lie algebra g we determine the subclass of Schiffmann’s classical dynamical r-matrices which are a-invariant and θ-twisted. The paper starts with a section highlighting the connections between asymptotic (boundary) KZB equations, representation theory of semisimple Lie groups, and integrable quantum field theories.</description><identifier>ISSN: 0019-3577</identifier><identifier>EISSN: 1872-6100</identifier><identifier>DOI: 10.1016/j.indag.2021.07.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Asymptotic properties ; Automorphisms ; Boundary KZB equations ; Concrete construction ; Differential equations ; Invariants ; Lie groups ; Mathematical analysis ; Matrices (mathematics) ; Matrix algebra ; Meromorphic functions ; Operators (mathematics) ; Quantum theory ; Reflection equations ; Spherical functions ; Yang–Baxter equations</subject><ispartof>Indagationes mathematicae, 2021-12, Vol.32 (6), p.1372-1411</ispartof><rights>2021 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-bb75dfba10ecb4b7c07a51869b48fa8c7bbe02f00bc3978ee5ca6467b85a67a73</citedby><cites>FETCH-LOGICAL-c376t-bb75dfba10ecb4b7c07a51869b48fa8c7bbe02f00bc3978ee5ca6467b85a67a73</cites><orcidid>0000-0003-4751-4431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.indag.2021.07.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Stokman, Jasper V.</creatorcontrib><title>Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations</title><title>Indagationes mathematicae</title><description>In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of a consistent system of first order differential operators on a, generalising asymptotic boundary Knizhnik–Zamolodchikov–Bernard (KZB) equations. The recipe involves folding and contracting a-invariant and θ-twisted symmetric classical dynamical r-matrices along an involutive automorphism θ. In case of the universal enveloping algebra of a simple Lie algebra g we determine the subclass of Schiffmann’s classical dynamical r-matrices which are a-invariant and θ-twisted. The paper starts with a section highlighting the connections between asymptotic (boundary) KZB equations, representation theory of semisimple Lie groups, and integrable quantum field theories.</description><subject>Algebra</subject><subject>Asymptotic properties</subject><subject>Automorphisms</subject><subject>Boundary KZB equations</subject><subject>Concrete construction</subject><subject>Differential equations</subject><subject>Invariants</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Matrix algebra</subject><subject>Meromorphic functions</subject><subject>Operators (mathematics)</subject><subject>Quantum theory</subject><subject>Reflection equations</subject><subject>Spherical functions</subject><subject>Yang–Baxter equations</subject><issn>0019-3577</issn><issn>1872-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQxi0EEqXwBCyRmBPOSWMnAwNUFJAqscDAZJ0dp3KU2q2dINh4B96QJ8FtmZnuj-777u5HyCWFjAJl111mbIOrLIecZsAzgOKITGjF85RRgGMyAaB1WpScn5KzELpYcsjZhOiF6xvdJGibRDk7eFRDLIPrx8E4GxLXxv646WNT9RiCUdgnzafF9T57Q7v6-fq-w49B-72L122v1U6c6O2Ie5dzctJiH_TFX5yS18X9y_wxXT4_PM1vl6kqOBtSKXnZtBIpaCVnkivgWNKK1XJWtVgpLqWGvAWQqqh5pXWpkM0Yl1WJjCMvpuTq4LvxbjvqMIjOjd7GlSJnOS3rSKGKU8VhSnkXQrxXbLxZo_8UFMSOp-jEnqfY8RTAReQZVTcHlY4PvBvtRVBGW6Ub4-O_onHmX_0vi02CXw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Stokman, Jasper V.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4751-4431</orcidid></search><sort><creationdate>20211201</creationdate><title>Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations</title><author>Stokman, Jasper V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-bb75dfba10ecb4b7c07a51869b48fa8c7bbe02f00bc3978ee5ca6467b85a67a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Asymptotic properties</topic><topic>Automorphisms</topic><topic>Boundary KZB equations</topic><topic>Concrete construction</topic><topic>Differential equations</topic><topic>Invariants</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Matrix algebra</topic><topic>Meromorphic functions</topic><topic>Operators (mathematics)</topic><topic>Quantum theory</topic><topic>Reflection equations</topic><topic>Spherical functions</topic><topic>Yang–Baxter equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stokman, Jasper V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Indagationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stokman, Jasper V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations</atitle><jtitle>Indagationes mathematicae</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>32</volume><issue>6</issue><spage>1372</spage><epage>1411</epage><pages>1372-1411</pages><issn>0019-3577</issn><eissn>1872-6100</eissn><abstract>In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of a consistent system of first order differential operators on a, generalising asymptotic boundary Knizhnik–Zamolodchikov–Bernard (KZB) equations. The recipe involves folding and contracting a-invariant and θ-twisted symmetric classical dynamical r-matrices along an involutive automorphism θ. In case of the universal enveloping algebra of a simple Lie algebra g we determine the subclass of Schiffmann’s classical dynamical r-matrices which are a-invariant and θ-twisted. The paper starts with a section highlighting the connections between asymptotic (boundary) KZB equations, representation theory of semisimple Lie groups, and integrable quantum field theories.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.indag.2021.07.003</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0003-4751-4431</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0019-3577
ispartof Indagationes mathematicae, 2021-12, Vol.32 (6), p.1372-1411
issn 0019-3577
1872-6100
language eng
recordid cdi_proquest_journals_2621590198
source Access via ScienceDirect (Elsevier)
subjects Algebra
Asymptotic properties
Automorphisms
Boundary KZB equations
Concrete construction
Differential equations
Invariants
Lie groups
Mathematical analysis
Matrices (mathematics)
Matrix algebra
Meromorphic functions
Operators (mathematics)
Quantum theory
Reflection equations
Spherical functions
Yang–Baxter equations
title Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folded%20and%20contracted%20solutions%20of%20coupled%20classical%20dynamical%20Yang%E2%80%93Baxter%20and%20reflection%20equations&rft.jtitle=Indagationes%20mathematicae&rft.au=Stokman,%20Jasper%20V.&rft.date=2021-12-01&rft.volume=32&rft.issue=6&rft.spage=1372&rft.epage=1411&rft.pages=1372-1411&rft.issn=0019-3577&rft.eissn=1872-6100&rft_id=info:doi/10.1016/j.indag.2021.07.003&rft_dat=%3Cproquest_cross%3E2621590198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621590198&rft_id=info:pmid/&rft_els_id=S0019357721000628&rfr_iscdi=true