Folded and contracted solutions of coupled classical dynamical Yang–Baxter and reflection equations

In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indagationes mathematicae 2021-12, Vol.32 (6), p.1372-1411
1. Verfasser: Stokman, Jasper V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we give a concrete recipe how to construct triples of algebra-valued meromorphic functions on a complex vector space a satisfying three coupled classical dynamical Yang–Baxter equations and an associated classical dynamical reflection equation. Such triples provide the local factors of a consistent system of first order differential operators on a, generalising asymptotic boundary Knizhnik–Zamolodchikov–Bernard (KZB) equations. The recipe involves folding and contracting a-invariant and θ-twisted symmetric classical dynamical r-matrices along an involutive automorphism θ. In case of the universal enveloping algebra of a simple Lie algebra g we determine the subclass of Schiffmann’s classical dynamical r-matrices which are a-invariant and θ-twisted. The paper starts with a section highlighting the connections between asymptotic (boundary) KZB equations, representation theory of semisimple Lie groups, and integrable quantum field theories.
ISSN:0019-3577
1872-6100
DOI:10.1016/j.indag.2021.07.003