Performance analysis of meta-heuristics on dual watermarking of color images based on SWT and SVD

This paper proposes a robust and high embedding capacity watermarking technique where two watermarks are embedded in a color image. A gray-scale image is embedded as one of the watermarks to identify the ownership of the host image using Stationary Wavelet Transform (SWT) and Singular Value Decompos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022, Vol.81 (1), p.1001-1027
Hauptverfasser: Sivananthamaitrey, P., Rajesh Kumar, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1027
container_issue 1
container_start_page 1001
container_title Multimedia tools and applications
container_volume 81
creator Sivananthamaitrey, P.
Rajesh Kumar, P.
description This paper proposes a robust and high embedding capacity watermarking technique where two watermarks are embedded in a color image. A gray-scale image is embedded as one of the watermarks to identify the ownership of the host image using Stationary Wavelet Transform (SWT) and Singular Value Decomposition (SVD). A binary watermark with the help of the least significant bit method is embedded to locate the tampers. This technique is optimized to have better robustness against various attacks by employing meta-heuristics. The performance of the Genetic Algorithm (GA), Invasive Weed Optimization (IWO) and Teaching Learning Based Optimization (TLBO) is analyzed on the proposed watermarking technique. A novel fitness function is proposed to optimize color image watermarking. This technique is applied to standard images and medical images. The performance of the meta-heuristics on the proposed method is compared with respect to the imperceptibility, robustness, the number of pixels changing rate (NPCR) and computation complexity.
doi_str_mv 10.1007/s11042-021-11204-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621425605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621425605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9b426a172503de6ca475146044f89a48135d6cfb8a65c26b0617858599a0f29b3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19Fz0ny0lzI_YaCwqZchbdPZ2bUzaZH9ezMreOdVDuF5X855CDlHuEQAfRUQQXAGHBkiB8HEAZmg1AnTmuNhnJMUmJaAx-QkhDUAKsnFhNhn56vOb2xbOGpb2-xCHWhX0Y3rLXt3g69DXxfxq6XlYBv6ZXsXcf9Rt6s9V3RN52m9sSsXaG6DK_fo4m0Z20q6eL05JUeVbYI7-32n5OXudjl7YPOn-8fZ9ZwVCWY9y3LBlUXNJSSlU4UVWqJQIESVZlakmMhSFVWeWiULrnJQqFOZyiyzUPEsT6bkYuzd-u5zcKE3627w8aJguOIouFQgI8VHqvBdCN5VZuvj8n5nEMxepRlVmqjS_Kg0IoaSMRQi3K6c_6v-J_UNlpJ1EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621425605</pqid></control><display><type>article</type><title>Performance analysis of meta-heuristics on dual watermarking of color images based on SWT and SVD</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sivananthamaitrey, P. ; Rajesh Kumar, P.</creator><creatorcontrib>Sivananthamaitrey, P. ; Rajesh Kumar, P.</creatorcontrib><description>This paper proposes a robust and high embedding capacity watermarking technique where two watermarks are embedded in a color image. A gray-scale image is embedded as one of the watermarks to identify the ownership of the host image using Stationary Wavelet Transform (SWT) and Singular Value Decomposition (SVD). A binary watermark with the help of the least significant bit method is embedded to locate the tampers. This technique is optimized to have better robustness against various attacks by employing meta-heuristics. The performance of the Genetic Algorithm (GA), Invasive Weed Optimization (IWO) and Teaching Learning Based Optimization (TLBO) is analyzed on the proposed watermarking technique. A novel fitness function is proposed to optimize color image watermarking. This technique is applied to standard images and medical images. The performance of the meta-heuristics on the proposed method is compared with respect to the imperceptibility, robustness, the number of pixels changing rate (NPCR) and computation complexity.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-021-11204-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Color imagery ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Embedding ; Genetic algorithms ; Heuristic ; Machine learning ; Medical imaging ; Multimedia Information Systems ; Optimization ; Robustness (mathematics) ; Singular value decomposition ; Special Purpose and Application-Based Systems ; Watermarking ; Wavelet transforms</subject><ispartof>Multimedia tools and applications, 2022, Vol.81 (1), p.1001-1027</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9b426a172503de6ca475146044f89a48135d6cfb8a65c26b0617858599a0f29b3</citedby><cites>FETCH-LOGICAL-c319t-9b426a172503de6ca475146044f89a48135d6cfb8a65c26b0617858599a0f29b3</cites><orcidid>0000-0002-7807-518X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-021-11204-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-021-11204-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sivananthamaitrey, P.</creatorcontrib><creatorcontrib>Rajesh Kumar, P.</creatorcontrib><title>Performance analysis of meta-heuristics on dual watermarking of color images based on SWT and SVD</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This paper proposes a robust and high embedding capacity watermarking technique where two watermarks are embedded in a color image. A gray-scale image is embedded as one of the watermarks to identify the ownership of the host image using Stationary Wavelet Transform (SWT) and Singular Value Decomposition (SVD). A binary watermark with the help of the least significant bit method is embedded to locate the tampers. This technique is optimized to have better robustness against various attacks by employing meta-heuristics. The performance of the Genetic Algorithm (GA), Invasive Weed Optimization (IWO) and Teaching Learning Based Optimization (TLBO) is analyzed on the proposed watermarking technique. A novel fitness function is proposed to optimize color image watermarking. This technique is applied to standard images and medical images. The performance of the meta-heuristics on the proposed method is compared with respect to the imperceptibility, robustness, the number of pixels changing rate (NPCR) and computation complexity.</description><subject>Color imagery</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Embedding</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Multimedia Information Systems</subject><subject>Optimization</subject><subject>Robustness (mathematics)</subject><subject>Singular value decomposition</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Watermarking</subject><subject>Wavelet transforms</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19Fz0ny0lzI_YaCwqZchbdPZ2bUzaZH9ezMreOdVDuF5X855CDlHuEQAfRUQQXAGHBkiB8HEAZmg1AnTmuNhnJMUmJaAx-QkhDUAKsnFhNhn56vOb2xbOGpb2-xCHWhX0Y3rLXt3g69DXxfxq6XlYBv6ZXsXcf9Rt6s9V3RN52m9sSsXaG6DK_fo4m0Z20q6eL05JUeVbYI7-32n5OXudjl7YPOn-8fZ9ZwVCWY9y3LBlUXNJSSlU4UVWqJQIESVZlakmMhSFVWeWiULrnJQqFOZyiyzUPEsT6bkYuzd-u5zcKE3627w8aJguOIouFQgI8VHqvBdCN5VZuvj8n5nEMxepRlVmqjS_Kg0IoaSMRQi3K6c_6v-J_UNlpJ1EA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sivananthamaitrey, P.</creator><creator>Rajesh Kumar, P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7807-518X</orcidid></search><sort><creationdate>2022</creationdate><title>Performance analysis of meta-heuristics on dual watermarking of color images based on SWT and SVD</title><author>Sivananthamaitrey, P. ; Rajesh Kumar, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9b426a172503de6ca475146044f89a48135d6cfb8a65c26b0617858599a0f29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Color imagery</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Embedding</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Multimedia Information Systems</topic><topic>Optimization</topic><topic>Robustness (mathematics)</topic><topic>Singular value decomposition</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Watermarking</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivananthamaitrey, P.</creatorcontrib><creatorcontrib>Rajesh Kumar, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivananthamaitrey, P.</au><au>Rajesh Kumar, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of meta-heuristics on dual watermarking of color images based on SWT and SVD</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022</date><risdate>2022</risdate><volume>81</volume><issue>1</issue><spage>1001</spage><epage>1027</epage><pages>1001-1027</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This paper proposes a robust and high embedding capacity watermarking technique where two watermarks are embedded in a color image. A gray-scale image is embedded as one of the watermarks to identify the ownership of the host image using Stationary Wavelet Transform (SWT) and Singular Value Decomposition (SVD). A binary watermark with the help of the least significant bit method is embedded to locate the tampers. This technique is optimized to have better robustness against various attacks by employing meta-heuristics. The performance of the Genetic Algorithm (GA), Invasive Weed Optimization (IWO) and Teaching Learning Based Optimization (TLBO) is analyzed on the proposed watermarking technique. A novel fitness function is proposed to optimize color image watermarking. This technique is applied to standard images and medical images. The performance of the meta-heuristics on the proposed method is compared with respect to the imperceptibility, robustness, the number of pixels changing rate (NPCR) and computation complexity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-021-11204-4</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-7807-518X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022, Vol.81 (1), p.1001-1027
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2621425605
source SpringerLink Journals - AutoHoldings
subjects Color imagery
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Embedding
Genetic algorithms
Heuristic
Machine learning
Medical imaging
Multimedia Information Systems
Optimization
Robustness (mathematics)
Singular value decomposition
Special Purpose and Application-Based Systems
Watermarking
Wavelet transforms
title Performance analysis of meta-heuristics on dual watermarking of color images based on SWT and SVD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20meta-heuristics%20on%20dual%20watermarking%20of%20color%20images%20based%20on%20SWT%20and%20SVD&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Sivananthamaitrey,%20P.&rft.date=2022&rft.volume=81&rft.issue=1&rft.spage=1001&rft.epage=1027&rft.pages=1001-1027&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-021-11204-4&rft_dat=%3Cproquest_cross%3E2621425605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621425605&rft_id=info:pmid/&rfr_iscdi=true