Assessing hail risk for property insurers with a dependent marked point process
Hail risk is among the most challenging perils to insure and property damage due to hailstones has been on the top of the list of annual claims for most non‐life insurers. In this article, we present a simple yet flexible statistical model for insurers to assess and manage hail risks from two aspect...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2022-01, Vol.185 (1), p.302-328 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 1 |
container_start_page | 302 |
container_title | Journal of the Royal Statistical Society. Series A, Statistics in society |
container_volume | 185 |
creator | Shi, Peng Fung, Glenn M. Dickinson, Daniel |
description | Hail risk is among the most challenging perils to insure and property damage due to hailstones has been on the top of the list of annual claims for most non‐life insurers. In this article, we present a simple yet flexible statistical model for insurers to assess and manage hail risks from two aspects: analysing the insurance claims arrival pattern upon occurrence of a hailstorm and quantifying the subsequent financial impact of the hailstorm. We formulate the problem using a marked point process where the reporting of insurance claims due to a hailstorm is treated as recurrent events and the claim amounts are viewed as associated marks. Three complications are addressed in model building: the unobserved heterogeneity in claim arrival, the dependence between the event time and the mark and the complex distribution in claim amount. Using a unique data that combine the exposure data from a major US insurer and the radar data from a third‐party vendor, we show the proposed method help improve predictive analytics for post‐hailstorm claims volume, arrival rate and severity, and thus claim management decisions for the insurer. |
doi_str_mv | 10.1111/rssa.12754 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621416811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621416811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-bb7801050e0e51aa84aa0f0ff880d8f966cfa8f11bedb383d0b1f074c653dbe73</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFYvfoIFb0LqTrPJbo6l-A8KglXwtmySWbttTeJOSum3d2s8-y7DwG_eGx5j1yAmEHUXiOwEpiqTJ2wEMldJobOPUzYSRS4TKAp9zi6I1uIopUbsZUaERL755Cvrtzx42nDXBt6FtsPQH7hvaBcwEN_7fsUtr7HDpsam5182bLDmXevjEvkqGl2yM2e3hFd_c8zeH-7f5k_J4uXxeT5bJFWaSpmUpdICRCZQYAbWammtcMI5rUWtXZHnlbPaAZRYl6lOa1GCE0pWeZbWJap0zG4G35j7vUPqzbrdhSZGmmk-BQm5BojU7UBVoSUK6EwXfHz7YECYY2HmWJj5LSzCMMB7v8XDP6R5XS5nw80PCAhvGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621416811</pqid></control><display><type>article</type><title>Assessing hail risk for property insurers with a dependent marked point process</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EBSCO Business Source Complete</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Peng ; Fung, Glenn M. ; Dickinson, Daniel</creator><creatorcontrib>Shi, Peng ; Fung, Glenn M. ; Dickinson, Daniel</creatorcontrib><description>Hail risk is among the most challenging perils to insure and property damage due to hailstones has been on the top of the list of annual claims for most non‐life insurers. In this article, we present a simple yet flexible statistical model for insurers to assess and manage hail risks from two aspects: analysing the insurance claims arrival pattern upon occurrence of a hailstorm and quantifying the subsequent financial impact of the hailstorm. We formulate the problem using a marked point process where the reporting of insurance claims due to a hailstorm is treated as recurrent events and the claim amounts are viewed as associated marks. Three complications are addressed in model building: the unobserved heterogeneity in claim arrival, the dependence between the event time and the mark and the complex distribution in claim amount. Using a unique data that combine the exposure data from a major US insurer and the radar data from a third‐party vendor, we show the proposed method help improve predictive analytics for post‐hailstorm claims volume, arrival rate and severity, and thus claim management decisions for the insurer.</description><identifier>ISSN: 0964-1998</identifier><identifier>EISSN: 1467-985X</identifier><identifier>DOI: 10.1111/rssa.12754</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Claims ; claims management ; copula ; hail risk ; Hailstorms ; Heterogeneity ; Insurance ; insurance analytics ; Insurance claims ; marked point process ; Property ; Property damage ; Radar data ; Recurrent ; Recurrent events ; Risk assessment ; Statistical models</subject><ispartof>Journal of the Royal Statistical Society. Series A, Statistics in society, 2022-01, Vol.185 (1), p.302-328</ispartof><rights>2021 Royal Statistical Society</rights><rights>Copyright © 2022 The Royal Statistical Society and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-bb7801050e0e51aa84aa0f0ff880d8f966cfa8f11bedb383d0b1f074c653dbe73</citedby><cites>FETCH-LOGICAL-c3344-bb7801050e0e51aa84aa0f0ff880d8f966cfa8f11bedb383d0b1f074c653dbe73</cites><orcidid>0000-0003-2789-3235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssa.12754$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssa.12754$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Fung, Glenn M.</creatorcontrib><creatorcontrib>Dickinson, Daniel</creatorcontrib><title>Assessing hail risk for property insurers with a dependent marked point process</title><title>Journal of the Royal Statistical Society. Series A, Statistics in society</title><description>Hail risk is among the most challenging perils to insure and property damage due to hailstones has been on the top of the list of annual claims for most non‐life insurers. In this article, we present a simple yet flexible statistical model for insurers to assess and manage hail risks from two aspects: analysing the insurance claims arrival pattern upon occurrence of a hailstorm and quantifying the subsequent financial impact of the hailstorm. We formulate the problem using a marked point process where the reporting of insurance claims due to a hailstorm is treated as recurrent events and the claim amounts are viewed as associated marks. Three complications are addressed in model building: the unobserved heterogeneity in claim arrival, the dependence between the event time and the mark and the complex distribution in claim amount. Using a unique data that combine the exposure data from a major US insurer and the radar data from a third‐party vendor, we show the proposed method help improve predictive analytics for post‐hailstorm claims volume, arrival rate and severity, and thus claim management decisions for the insurer.</description><subject>Claims</subject><subject>claims management</subject><subject>copula</subject><subject>hail risk</subject><subject>Hailstorms</subject><subject>Heterogeneity</subject><subject>Insurance</subject><subject>insurance analytics</subject><subject>Insurance claims</subject><subject>marked point process</subject><subject>Property</subject><subject>Property damage</subject><subject>Radar data</subject><subject>Recurrent</subject><subject>Recurrent events</subject><subject>Risk assessment</subject><subject>Statistical models</subject><issn>0964-1998</issn><issn>1467-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFYvfoIFb0LqTrPJbo6l-A8KglXwtmySWbttTeJOSum3d2s8-y7DwG_eGx5j1yAmEHUXiOwEpiqTJ2wEMldJobOPUzYSRS4TKAp9zi6I1uIopUbsZUaERL755Cvrtzx42nDXBt6FtsPQH7hvaBcwEN_7fsUtr7HDpsam5182bLDmXevjEvkqGl2yM2e3hFd_c8zeH-7f5k_J4uXxeT5bJFWaSpmUpdICRCZQYAbWammtcMI5rUWtXZHnlbPaAZRYl6lOa1GCE0pWeZbWJap0zG4G35j7vUPqzbrdhSZGmmk-BQm5BojU7UBVoSUK6EwXfHz7YECYY2HmWJj5LSzCMMB7v8XDP6R5XS5nw80PCAhvGQ</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Shi, Peng</creator><creator>Fung, Glenn M.</creator><creator>Dickinson, Daniel</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2789-3235</orcidid></search><sort><creationdate>202201</creationdate><title>Assessing hail risk for property insurers with a dependent marked point process</title><author>Shi, Peng ; Fung, Glenn M. ; Dickinson, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-bb7801050e0e51aa84aa0f0ff880d8f966cfa8f11bedb383d0b1f074c653dbe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Claims</topic><topic>claims management</topic><topic>copula</topic><topic>hail risk</topic><topic>Hailstorms</topic><topic>Heterogeneity</topic><topic>Insurance</topic><topic>insurance analytics</topic><topic>Insurance claims</topic><topic>marked point process</topic><topic>Property</topic><topic>Property damage</topic><topic>Radar data</topic><topic>Recurrent</topic><topic>Recurrent events</topic><topic>Risk assessment</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Fung, Glenn M.</creatorcontrib><creatorcontrib>Dickinson, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Peng</au><au>Fung, Glenn M.</au><au>Dickinson, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing hail risk for property insurers with a dependent marked point process</atitle><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle><date>2022-01</date><risdate>2022</risdate><volume>185</volume><issue>1</issue><spage>302</spage><epage>328</epage><pages>302-328</pages><issn>0964-1998</issn><eissn>1467-985X</eissn><abstract>Hail risk is among the most challenging perils to insure and property damage due to hailstones has been on the top of the list of annual claims for most non‐life insurers. In this article, we present a simple yet flexible statistical model for insurers to assess and manage hail risks from two aspects: analysing the insurance claims arrival pattern upon occurrence of a hailstorm and quantifying the subsequent financial impact of the hailstorm. We formulate the problem using a marked point process where the reporting of insurance claims due to a hailstorm is treated as recurrent events and the claim amounts are viewed as associated marks. Three complications are addressed in model building: the unobserved heterogeneity in claim arrival, the dependence between the event time and the mark and the complex distribution in claim amount. Using a unique data that combine the exposure data from a major US insurer and the radar data from a third‐party vendor, we show the proposed method help improve predictive analytics for post‐hailstorm claims volume, arrival rate and severity, and thus claim management decisions for the insurer.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1111/rssa.12754</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-2789-3235</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1998 |
ispartof | Journal of the Royal Statistical Society. Series A, Statistics in society, 2022-01, Vol.185 (1), p.302-328 |
issn | 0964-1998 1467-985X |
language | eng |
recordid | cdi_proquest_journals_2621416811 |
source | Oxford University Press Journals All Titles (1996-Current); EBSCO Business Source Complete; Wiley Online Library Journals Frontfile Complete |
subjects | Claims claims management copula hail risk Hailstorms Heterogeneity Insurance insurance analytics Insurance claims marked point process Property Property damage Radar data Recurrent Recurrent events Risk assessment Statistical models |
title | Assessing hail risk for property insurers with a dependent marked point process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20hail%20risk%20for%20property%20insurers%20with%20a%20dependent%20marked%20point%20process&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20A,%20Statistics%20in%20society&rft.au=Shi,%20Peng&rft.date=2022-01&rft.volume=185&rft.issue=1&rft.spage=302&rft.epage=328&rft.pages=302-328&rft.issn=0964-1998&rft.eissn=1467-985X&rft_id=info:doi/10.1111/rssa.12754&rft_dat=%3Cproquest_cross%3E2621416811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621416811&rft_id=info:pmid/&rfr_iscdi=true |