On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows

We analyze three-dimensional particle-laden, isotropic turbulence to develop an understanding of inertial particle dynamics from a kinetic energy perspective. Data trends implying inhomogeneous sampling of the flow by particles are identified and used to support a proposed particle behavior: particl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-01, Vol.34 (1)
Hauptverfasser: Pietrzyk, Kyle, Horwitz, Jeremy A. K., Najjar, Fady M., Minich, Roger W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Pietrzyk, Kyle
Horwitz, Jeremy A. K.
Najjar, Fady M.
Minich, Roger W.
description We analyze three-dimensional particle-laden, isotropic turbulence to develop an understanding of inertial particle dynamics from a kinetic energy perspective. Data trends implying inhomogeneous sampling of the flow by particles are identified and used to support a proposed particle behavior: particles appear to accumulate in regions of low flow kinetic energy over time because they lose kinetic energy and slow down in such regions, ultimately causing them to spend more time there. To elucidate this behavior, we derive a particle kinetic energy equation from the particle momentum equation, which incorporates inertial effects through the Schiller–Naumann drag correlation. Upon extracting fundamental physics from this equation, hypotheses regarding the role of the Stokes number in the temporal change of particle kinetic energy and the previously proposed particle behavior are evaluated using simulation data considering three Stokes numbers. Finally, a Fokker–Planck equation is used to derive the steady-state probability density function of the particle kinetic energy. The model fits the simulation data well and provides a tool for further investigation into understanding preferential concentration, as well as a reduced order model for predicting particle kinetic energy in turbulent flows.
doi_str_mv 10.1063/5.0075650
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2621408439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621408439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-ec5d1bd6f61867514a2ab6441acd9d2bdad94b1e6592e49d91223930c5a4b6343</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q9KSwNdl8tHuU4hcUetFzyCaz7dZt0iZZSv-9qS0ePc0wPMwwL0K3lIwokexJjAgZCynIGRpQMqmKsZTy_NCPSSElo5foKsYVIYRVpRyg3dxh7XS3j23MjcUxebPUMbUGr72FrnUL7BucloA3OuRxB_i7dXAA4CAs9hi2vU6td7h1f6botIU8iT4Fv8k29aHuO3AJN53fxWt00eguws2pDtHX68vn9L2Yzd8-ps-zwjDBUwFGWFpb2Ug6kWNBuS51LTmn2tjKlrXVtuI1BSmqEnhlK1qWrGLECM1ryTgborvjXp9fUtG0CczSeOfAJEUnnHLBMro_ok3w2x5iUivfh5xKVKUsKScTnpcO0cNRmeBjDNCoTWjXOuwVJeoQvhLqFH62j0d7uPgbzj_4B2H9hR0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621408439</pqid></control><display><type>article</type><title>On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Pietrzyk, Kyle ; Horwitz, Jeremy A. K. ; Najjar, Fady M. ; Minich, Roger W.</creator><creatorcontrib>Pietrzyk, Kyle ; Horwitz, Jeremy A. K. ; Najjar, Fady M. ; Minich, Roger W.</creatorcontrib><description>We analyze three-dimensional particle-laden, isotropic turbulence to develop an understanding of inertial particle dynamics from a kinetic energy perspective. Data trends implying inhomogeneous sampling of the flow by particles are identified and used to support a proposed particle behavior: particles appear to accumulate in regions of low flow kinetic energy over time because they lose kinetic energy and slow down in such regions, ultimately causing them to spend more time there. To elucidate this behavior, we derive a particle kinetic energy equation from the particle momentum equation, which incorporates inertial effects through the Schiller–Naumann drag correlation. Upon extracting fundamental physics from this equation, hypotheses regarding the role of the Stokes number in the temporal change of particle kinetic energy and the previously proposed particle behavior are evaluated using simulation data considering three Stokes numbers. Finally, a Fokker–Planck equation is used to derive the steady-state probability density function of the particle kinetic energy. The model fits the simulation data well and provides a tool for further investigation into understanding preferential concentration, as well as a reduced order model for predicting particle kinetic energy in turbulent flows.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0075650</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Energy ; Fluid dynamics ; Fokker-Planck equation ; Isotropic turbulence ; Kinetic energy ; Low flow ; Probability density functions ; Reduced order models ; Stochastic models ; Stokes number ; Three dimensional analysis ; Three dimensional flow</subject><ispartof>Physics of fluids (1994), 2022-01, Vol.34 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-ec5d1bd6f61867514a2ab6441acd9d2bdad94b1e6592e49d91223930c5a4b6343</citedby><cites>FETCH-LOGICAL-c354t-ec5d1bd6f61867514a2ab6441acd9d2bdad94b1e6592e49d91223930c5a4b6343</cites><orcidid>0000-0003-4200-4723 ; 0000-0001-8078-5562 ; 0000-0001-5040-8731 ; 0000000150408731 ; 0000000342004723 ; 0000000180785562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1841453$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pietrzyk, Kyle</creatorcontrib><creatorcontrib>Horwitz, Jeremy A. K.</creatorcontrib><creatorcontrib>Najjar, Fady M.</creatorcontrib><creatorcontrib>Minich, Roger W.</creatorcontrib><title>On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows</title><title>Physics of fluids (1994)</title><description>We analyze three-dimensional particle-laden, isotropic turbulence to develop an understanding of inertial particle dynamics from a kinetic energy perspective. Data trends implying inhomogeneous sampling of the flow by particles are identified and used to support a proposed particle behavior: particles appear to accumulate in regions of low flow kinetic energy over time because they lose kinetic energy and slow down in such regions, ultimately causing them to spend more time there. To elucidate this behavior, we derive a particle kinetic energy equation from the particle momentum equation, which incorporates inertial effects through the Schiller–Naumann drag correlation. Upon extracting fundamental physics from this equation, hypotheses regarding the role of the Stokes number in the temporal change of particle kinetic energy and the previously proposed particle behavior are evaluated using simulation data considering three Stokes numbers. Finally, a Fokker–Planck equation is used to derive the steady-state probability density function of the particle kinetic energy. The model fits the simulation data well and provides a tool for further investigation into understanding preferential concentration, as well as a reduced order model for predicting particle kinetic energy in turbulent flows.</description><subject>Energy</subject><subject>Fluid dynamics</subject><subject>Fokker-Planck equation</subject><subject>Isotropic turbulence</subject><subject>Kinetic energy</subject><subject>Low flow</subject><subject>Probability density functions</subject><subject>Reduced order models</subject><subject>Stochastic models</subject><subject>Stokes number</subject><subject>Three dimensional analysis</subject><subject>Three dimensional flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q9KSwNdl8tHuU4hcUetFzyCaz7dZt0iZZSv-9qS0ePc0wPMwwL0K3lIwokexJjAgZCynIGRpQMqmKsZTy_NCPSSElo5foKsYVIYRVpRyg3dxh7XS3j23MjcUxebPUMbUGr72FrnUL7BucloA3OuRxB_i7dXAA4CAs9hi2vU6td7h1f6botIU8iT4Fv8k29aHuO3AJN53fxWt00eguws2pDtHX68vn9L2Yzd8-ps-zwjDBUwFGWFpb2Ug6kWNBuS51LTmn2tjKlrXVtuI1BSmqEnhlK1qWrGLECM1ryTgborvjXp9fUtG0CczSeOfAJEUnnHLBMro_ok3w2x5iUivfh5xKVKUsKScTnpcO0cNRmeBjDNCoTWjXOuwVJeoQvhLqFH62j0d7uPgbzj_4B2H9hR0</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Pietrzyk, Kyle</creator><creator>Horwitz, Jeremy A. K.</creator><creator>Najjar, Fady M.</creator><creator>Minich, Roger W.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4200-4723</orcidid><orcidid>https://orcid.org/0000-0001-8078-5562</orcidid><orcidid>https://orcid.org/0000-0001-5040-8731</orcidid><orcidid>https://orcid.org/0000000150408731</orcidid><orcidid>https://orcid.org/0000000342004723</orcidid><orcidid>https://orcid.org/0000000180785562</orcidid></search><sort><creationdate>202201</creationdate><title>On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows</title><author>Pietrzyk, Kyle ; Horwitz, Jeremy A. K. ; Najjar, Fady M. ; Minich, Roger W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-ec5d1bd6f61867514a2ab6441acd9d2bdad94b1e6592e49d91223930c5a4b6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy</topic><topic>Fluid dynamics</topic><topic>Fokker-Planck equation</topic><topic>Isotropic turbulence</topic><topic>Kinetic energy</topic><topic>Low flow</topic><topic>Probability density functions</topic><topic>Reduced order models</topic><topic>Stochastic models</topic><topic>Stokes number</topic><topic>Three dimensional analysis</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pietrzyk, Kyle</creatorcontrib><creatorcontrib>Horwitz, Jeremy A. K.</creatorcontrib><creatorcontrib>Najjar, Fady M.</creatorcontrib><creatorcontrib>Minich, Roger W.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pietrzyk, Kyle</au><au>Horwitz, Jeremy A. K.</au><au>Najjar, Fady M.</au><au>Minich, Roger W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-01</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We analyze three-dimensional particle-laden, isotropic turbulence to develop an understanding of inertial particle dynamics from a kinetic energy perspective. Data trends implying inhomogeneous sampling of the flow by particles are identified and used to support a proposed particle behavior: particles appear to accumulate in regions of low flow kinetic energy over time because they lose kinetic energy and slow down in such regions, ultimately causing them to spend more time there. To elucidate this behavior, we derive a particle kinetic energy equation from the particle momentum equation, which incorporates inertial effects through the Schiller–Naumann drag correlation. Upon extracting fundamental physics from this equation, hypotheses regarding the role of the Stokes number in the temporal change of particle kinetic energy and the previously proposed particle behavior are evaluated using simulation data considering three Stokes numbers. Finally, a Fokker–Planck equation is used to derive the steady-state probability density function of the particle kinetic energy. The model fits the simulation data well and provides a tool for further investigation into understanding preferential concentration, as well as a reduced order model for predicting particle kinetic energy in turbulent flows.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0075650</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4200-4723</orcidid><orcidid>https://orcid.org/0000-0001-8078-5562</orcidid><orcidid>https://orcid.org/0000-0001-5040-8731</orcidid><orcidid>https://orcid.org/0000000150408731</orcidid><orcidid>https://orcid.org/0000000342004723</orcidid><orcidid>https://orcid.org/0000000180785562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-01, Vol.34 (1)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2621408439
source AIP Journals Complete; Alma/SFX Local Collection
subjects Energy
Fluid dynamics
Fokker-Planck equation
Isotropic turbulence
Kinetic energy
Low flow
Probability density functions
Reduced order models
Stochastic models
Stokes number
Three dimensional analysis
Three dimensional flow
title On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20analysis%20and%20stochastic%20modeling%20of%20the%20particle%20kinetic%20energy%20equation%20in%20particle-laden%20isotropic%20turbulent%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Pietrzyk,%20Kyle&rft.date=2022-01&rft.volume=34&rft.issue=1&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0075650&rft_dat=%3Cproquest_scita%3E2621408439%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621408439&rft_id=info:pmid/&rfr_iscdi=true