On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows
We analyze three-dimensional particle-laden, isotropic turbulence to develop an understanding of inertial particle dynamics from a kinetic energy perspective. Data trends implying inhomogeneous sampling of the flow by particles are identified and used to support a proposed particle behavior: particl...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-01, Vol.34 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 34 |
creator | Pietrzyk, Kyle Horwitz, Jeremy A. K. Najjar, Fady M. Minich, Roger W. |
description | We analyze three-dimensional particle-laden, isotropic turbulence to develop an understanding of inertial particle dynamics from a kinetic energy perspective. Data trends implying inhomogeneous sampling of the flow by particles are identified and used to support a proposed particle behavior: particles appear to accumulate in regions of low flow kinetic energy over time because they lose kinetic energy and slow down in such regions, ultimately causing them to spend more time there. To elucidate this behavior, we derive a particle kinetic energy equation from the particle momentum equation, which incorporates inertial effects through the Schiller–Naumann drag correlation. Upon extracting fundamental physics from this equation, hypotheses regarding the role of the Stokes number in the temporal change of particle kinetic energy and the previously proposed particle behavior are evaluated using simulation data considering three Stokes numbers. Finally, a Fokker–Planck equation is used to derive the steady-state probability density function of the particle kinetic energy. The model fits the simulation data well and provides a tool for further investigation into understanding preferential concentration, as well as a reduced order model for predicting particle kinetic energy in turbulent flows. |
doi_str_mv | 10.1063/5.0075650 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2621408439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621408439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-ec5d1bd6f61867514a2ab6441acd9d2bdad94b1e6592e49d91223930c5a4b6343</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q9KSwNdl8tHuU4hcUetFzyCaz7dZt0iZZSv-9qS0ePc0wPMwwL0K3lIwokexJjAgZCynIGRpQMqmKsZTy_NCPSSElo5foKsYVIYRVpRyg3dxh7XS3j23MjcUxebPUMbUGr72FrnUL7BucloA3OuRxB_i7dXAA4CAs9hi2vU6td7h1f6botIU8iT4Fv8k29aHuO3AJN53fxWt00eguws2pDtHX68vn9L2Yzd8-ps-zwjDBUwFGWFpb2Ug6kWNBuS51LTmn2tjKlrXVtuI1BSmqEnhlK1qWrGLECM1ryTgborvjXp9fUtG0CczSeOfAJEUnnHLBMro_ok3w2x5iUivfh5xKVKUsKScTnpcO0cNRmeBjDNCoTWjXOuwVJeoQvhLqFH62j0d7uPgbzj_4B2H9hR0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621408439</pqid></control><display><type>article</type><title>On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Pietrzyk, Kyle ; Horwitz, Jeremy A. K. ; Najjar, Fady M. ; Minich, Roger W.</creator><creatorcontrib>Pietrzyk, Kyle ; Horwitz, Jeremy A. K. ; Najjar, Fady M. ; Minich, Roger W.</creatorcontrib><description>We analyze three-dimensional particle-laden, isotropic turbulence to develop an understanding of inertial particle dynamics from a kinetic energy perspective. Data trends implying inhomogeneous sampling of the flow by particles are identified and used to support a proposed particle behavior: particles appear to accumulate in regions of low flow kinetic energy over time because they lose kinetic energy and slow down in such regions, ultimately causing them to spend more time there. To elucidate this behavior, we derive a particle kinetic energy equation from the particle momentum equation, which incorporates inertial effects through the Schiller–Naumann drag correlation. Upon extracting fundamental physics from this equation, hypotheses regarding the role of the Stokes number in the temporal change of particle kinetic energy and the previously proposed particle behavior are evaluated using simulation data considering three Stokes numbers. Finally, a Fokker–Planck equation is used to derive the steady-state probability density function of the particle kinetic energy. The model fits the simulation data well and provides a tool for further investigation into understanding preferential concentration, as well as a reduced order model for predicting particle kinetic energy in turbulent flows.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0075650</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Energy ; Fluid dynamics ; Fokker-Planck equation ; Isotropic turbulence ; Kinetic energy ; Low flow ; Probability density functions ; Reduced order models ; Stochastic models ; Stokes number ; Three dimensional analysis ; Three dimensional flow</subject><ispartof>Physics of fluids (1994), 2022-01, Vol.34 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-ec5d1bd6f61867514a2ab6441acd9d2bdad94b1e6592e49d91223930c5a4b6343</citedby><cites>FETCH-LOGICAL-c354t-ec5d1bd6f61867514a2ab6441acd9d2bdad94b1e6592e49d91223930c5a4b6343</cites><orcidid>0000-0003-4200-4723 ; 0000-0001-8078-5562 ; 0000-0001-5040-8731 ; 0000000150408731 ; 0000000342004723 ; 0000000180785562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1841453$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pietrzyk, Kyle</creatorcontrib><creatorcontrib>Horwitz, Jeremy A. K.</creatorcontrib><creatorcontrib>Najjar, Fady M.</creatorcontrib><creatorcontrib>Minich, Roger W.</creatorcontrib><title>On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows</title><title>Physics of fluids (1994)</title><description>We analyze three-dimensional particle-laden, isotropic turbulence to develop an understanding of inertial particle dynamics from a kinetic energy perspective. Data trends implying inhomogeneous sampling of the flow by particles are identified and used to support a proposed particle behavior: particles appear to accumulate in regions of low flow kinetic energy over time because they lose kinetic energy and slow down in such regions, ultimately causing them to spend more time there. To elucidate this behavior, we derive a particle kinetic energy equation from the particle momentum equation, which incorporates inertial effects through the Schiller–Naumann drag correlation. Upon extracting fundamental physics from this equation, hypotheses regarding the role of the Stokes number in the temporal change of particle kinetic energy and the previously proposed particle behavior are evaluated using simulation data considering three Stokes numbers. Finally, a Fokker–Planck equation is used to derive the steady-state probability density function of the particle kinetic energy. The model fits the simulation data well and provides a tool for further investigation into understanding preferential concentration, as well as a reduced order model for predicting particle kinetic energy in turbulent flows.</description><subject>Energy</subject><subject>Fluid dynamics</subject><subject>Fokker-Planck equation</subject><subject>Isotropic turbulence</subject><subject>Kinetic energy</subject><subject>Low flow</subject><subject>Probability density functions</subject><subject>Reduced order models</subject><subject>Stochastic models</subject><subject>Stokes number</subject><subject>Three dimensional analysis</subject><subject>Three dimensional flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q9KSwNdl8tHuU4hcUetFzyCaz7dZt0iZZSv-9qS0ePc0wPMwwL0K3lIwokexJjAgZCynIGRpQMqmKsZTy_NCPSSElo5foKsYVIYRVpRyg3dxh7XS3j23MjcUxebPUMbUGr72FrnUL7BucloA3OuRxB_i7dXAA4CAs9hi2vU6td7h1f6botIU8iT4Fv8k29aHuO3AJN53fxWt00eguws2pDtHX68vn9L2Yzd8-ps-zwjDBUwFGWFpb2Ug6kWNBuS51LTmn2tjKlrXVtuI1BSmqEnhlK1qWrGLECM1ryTgborvjXp9fUtG0CczSeOfAJEUnnHLBMro_ok3w2x5iUivfh5xKVKUsKScTnpcO0cNRmeBjDNCoTWjXOuwVJeoQvhLqFH62j0d7uPgbzj_4B2H9hR0</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Pietrzyk, Kyle</creator><creator>Horwitz, Jeremy A. K.</creator><creator>Najjar, Fady M.</creator><creator>Minich, Roger W.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4200-4723</orcidid><orcidid>https://orcid.org/0000-0001-8078-5562</orcidid><orcidid>https://orcid.org/0000-0001-5040-8731</orcidid><orcidid>https://orcid.org/0000000150408731</orcidid><orcidid>https://orcid.org/0000000342004723</orcidid><orcidid>https://orcid.org/0000000180785562</orcidid></search><sort><creationdate>202201</creationdate><title>On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows</title><author>Pietrzyk, Kyle ; Horwitz, Jeremy A. K. ; Najjar, Fady M. ; Minich, Roger W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-ec5d1bd6f61867514a2ab6441acd9d2bdad94b1e6592e49d91223930c5a4b6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy</topic><topic>Fluid dynamics</topic><topic>Fokker-Planck equation</topic><topic>Isotropic turbulence</topic><topic>Kinetic energy</topic><topic>Low flow</topic><topic>Probability density functions</topic><topic>Reduced order models</topic><topic>Stochastic models</topic><topic>Stokes number</topic><topic>Three dimensional analysis</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pietrzyk, Kyle</creatorcontrib><creatorcontrib>Horwitz, Jeremy A. K.</creatorcontrib><creatorcontrib>Najjar, Fady M.</creatorcontrib><creatorcontrib>Minich, Roger W.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pietrzyk, Kyle</au><au>Horwitz, Jeremy A. K.</au><au>Najjar, Fady M.</au><au>Minich, Roger W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-01</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We analyze three-dimensional particle-laden, isotropic turbulence to develop an understanding of inertial particle dynamics from a kinetic energy perspective. Data trends implying inhomogeneous sampling of the flow by particles are identified and used to support a proposed particle behavior: particles appear to accumulate in regions of low flow kinetic energy over time because they lose kinetic energy and slow down in such regions, ultimately causing them to spend more time there. To elucidate this behavior, we derive a particle kinetic energy equation from the particle momentum equation, which incorporates inertial effects through the Schiller–Naumann drag correlation. Upon extracting fundamental physics from this equation, hypotheses regarding the role of the Stokes number in the temporal change of particle kinetic energy and the previously proposed particle behavior are evaluated using simulation data considering three Stokes numbers. Finally, a Fokker–Planck equation is used to derive the steady-state probability density function of the particle kinetic energy. The model fits the simulation data well and provides a tool for further investigation into understanding preferential concentration, as well as a reduced order model for predicting particle kinetic energy in turbulent flows.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0075650</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4200-4723</orcidid><orcidid>https://orcid.org/0000-0001-8078-5562</orcidid><orcidid>https://orcid.org/0000-0001-5040-8731</orcidid><orcidid>https://orcid.org/0000000150408731</orcidid><orcidid>https://orcid.org/0000000342004723</orcidid><orcidid>https://orcid.org/0000000180785562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2022-01, Vol.34 (1) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2621408439 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Energy Fluid dynamics Fokker-Planck equation Isotropic turbulence Kinetic energy Low flow Probability density functions Reduced order models Stochastic models Stokes number Three dimensional analysis Three dimensional flow |
title | On analysis and stochastic modeling of the particle kinetic energy equation in particle-laden isotropic turbulent flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20analysis%20and%20stochastic%20modeling%20of%20the%20particle%20kinetic%20energy%20equation%20in%20particle-laden%20isotropic%20turbulent%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Pietrzyk,%20Kyle&rft.date=2022-01&rft.volume=34&rft.issue=1&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0075650&rft_dat=%3Cproquest_scita%3E2621408439%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621408439&rft_id=info:pmid/&rfr_iscdi=true |