Application of Various Machine Learning Models for Process Stability of Bio-Electrochemical Anaerobic Digestion
The application of a machine learning (ML) model to bio-electrochemical anaerobic digestion (BEAD) is a future-oriented approach for improving process stability by predicting performances that have nonlinear relationships with various operational parameters. Five ML models, which included tree-, reg...
Gespeichert in:
Veröffentlicht in: | Processes 2022-01, Vol.10 (1), p.158 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 158 |
container_title | Processes |
container_volume | 10 |
creator | Cheon, Ain Sung, Jwakyung Jun, Hangbae Jang, Heewon Kim, Minji Park, Jungyu |
description | The application of a machine learning (ML) model to bio-electrochemical anaerobic digestion (BEAD) is a future-oriented approach for improving process stability by predicting performances that have nonlinear relationships with various operational parameters. Five ML models, which included tree-, regression-, and neural network-based algorithms, were applied to predict the methane yield in BEAD reactor. The results showed that various 1-step ahead ML models, which utilized prior data of BEAD performances, could enhance prediction accuracy. In addition, 1-step ahead with retraining algorithm could improve prediction accuracy by 37.3% compared with the conventional multi-step ahead algorithm. The improvement was particularly noteworthy in tree- and regression-based ML models. Moreover, 1-step ahead with retraining algorithm showed high potential of achieving efficient prediction using pH as a single input data, which is plausibly an easier monitoring parameter compared with the other parameters required in bioprocess models. |
doi_str_mv | 10.3390/pr10010158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621347708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621347708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-21ab01420b875baf8ec80d6be9ae8908f3ea828bda7ea522058515209d6789ab3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGov_gUBb8Jqkm02ybHW-gEtCn5cl0l2tk3ZbtZke-h_7xYFncsMvDfvB4-QS85u8tyw2y5yxjjjUp-QkRBCZUZxdfrvPieTlLZsGMNzLYsRCbOua7yD3oeWhpp-QvRhn-gK3Ma3SJcIsfXtmq5ChU2idYj0NQaHKdG3HqxvfH84Pt75kC0adP0gbnA3RDZ01gLGYL2j936N6ci4IGc1NAknv3tMPh4W7_OnbPny-DyfLTMnjOwzwcEyPhXMaiUt1BqdZlVh0QBqw3SdI2ihbQUKQQrBpJZcCmaqQmkDNh-Tq5_cLoav_cAut2Ef2wFZikLwfKoU04Pr-sflYkgpYl120e8gHkrOymOn5V-n-TfPR2m0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621347708</pqid></control><display><type>article</type><title>Application of Various Machine Learning Models for Process Stability of Bio-Electrochemical Anaerobic Digestion</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cheon, Ain ; Sung, Jwakyung ; Jun, Hangbae ; Jang, Heewon ; Kim, Minji ; Park, Jungyu</creator><creatorcontrib>Cheon, Ain ; Sung, Jwakyung ; Jun, Hangbae ; Jang, Heewon ; Kim, Minji ; Park, Jungyu</creatorcontrib><description>The application of a machine learning (ML) model to bio-electrochemical anaerobic digestion (BEAD) is a future-oriented approach for improving process stability by predicting performances that have nonlinear relationships with various operational parameters. Five ML models, which included tree-, regression-, and neural network-based algorithms, were applied to predict the methane yield in BEAD reactor. The results showed that various 1-step ahead ML models, which utilized prior data of BEAD performances, could enhance prediction accuracy. In addition, 1-step ahead with retraining algorithm could improve prediction accuracy by 37.3% compared with the conventional multi-step ahead algorithm. The improvement was particularly noteworthy in tree- and regression-based ML models. Moreover, 1-step ahead with retraining algorithm showed high potential of achieving efficient prediction using pH as a single input data, which is plausibly an easier monitoring parameter compared with the other parameters required in bioprocess models.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr10010158</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Alkalinity ; Anaerobic digestion ; Anaerobic processes ; Biogas ; Chemical oxygen demand ; Efficiency ; Food waste ; Learning algorithms ; Machine learning ; Mathematical models ; Neural networks ; Parameters ; Performance prediction ; Predictions ; Regression analysis ; Stability ; Statistical analysis ; Variables</subject><ispartof>Processes, 2022-01, Vol.10 (1), p.158</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-21ab01420b875baf8ec80d6be9ae8908f3ea828bda7ea522058515209d6789ab3</citedby><cites>FETCH-LOGICAL-c295t-21ab01420b875baf8ec80d6be9ae8908f3ea828bda7ea522058515209d6789ab3</cites><orcidid>0000-0001-8097-235X ; 0000-0003-0319-929X ; 0000-0003-2290-6543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cheon, Ain</creatorcontrib><creatorcontrib>Sung, Jwakyung</creatorcontrib><creatorcontrib>Jun, Hangbae</creatorcontrib><creatorcontrib>Jang, Heewon</creatorcontrib><creatorcontrib>Kim, Minji</creatorcontrib><creatorcontrib>Park, Jungyu</creatorcontrib><title>Application of Various Machine Learning Models for Process Stability of Bio-Electrochemical Anaerobic Digestion</title><title>Processes</title><description>The application of a machine learning (ML) model to bio-electrochemical anaerobic digestion (BEAD) is a future-oriented approach for improving process stability by predicting performances that have nonlinear relationships with various operational parameters. Five ML models, which included tree-, regression-, and neural network-based algorithms, were applied to predict the methane yield in BEAD reactor. The results showed that various 1-step ahead ML models, which utilized prior data of BEAD performances, could enhance prediction accuracy. In addition, 1-step ahead with retraining algorithm could improve prediction accuracy by 37.3% compared with the conventional multi-step ahead algorithm. The improvement was particularly noteworthy in tree- and regression-based ML models. Moreover, 1-step ahead with retraining algorithm showed high potential of achieving efficient prediction using pH as a single input data, which is plausibly an easier monitoring parameter compared with the other parameters required in bioprocess models.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alkalinity</subject><subject>Anaerobic digestion</subject><subject>Anaerobic processes</subject><subject>Biogas</subject><subject>Chemical oxygen demand</subject><subject>Efficiency</subject><subject>Food waste</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Stability</subject><subject>Statistical analysis</subject><subject>Variables</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM1LAzEQxYMoWGov_gUBb8Jqkm02ybHW-gEtCn5cl0l2tk3ZbtZke-h_7xYFncsMvDfvB4-QS85u8tyw2y5yxjjjUp-QkRBCZUZxdfrvPieTlLZsGMNzLYsRCbOua7yD3oeWhpp-QvRhn-gK3Ma3SJcIsfXtmq5ChU2idYj0NQaHKdG3HqxvfH84Pt75kC0adP0gbnA3RDZ01gLGYL2j936N6ci4IGc1NAknv3tMPh4W7_OnbPny-DyfLTMnjOwzwcEyPhXMaiUt1BqdZlVh0QBqw3SdI2ihbQUKQQrBpJZcCmaqQmkDNh-Tq5_cLoav_cAut2Ef2wFZikLwfKoU04Pr-sflYkgpYl120e8gHkrOymOn5V-n-TfPR2m0</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Cheon, Ain</creator><creator>Sung, Jwakyung</creator><creator>Jun, Hangbae</creator><creator>Jang, Heewon</creator><creator>Kim, Minji</creator><creator>Park, Jungyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8097-235X</orcidid><orcidid>https://orcid.org/0000-0003-0319-929X</orcidid><orcidid>https://orcid.org/0000-0003-2290-6543</orcidid></search><sort><creationdate>20220101</creationdate><title>Application of Various Machine Learning Models for Process Stability of Bio-Electrochemical Anaerobic Digestion</title><author>Cheon, Ain ; Sung, Jwakyung ; Jun, Hangbae ; Jang, Heewon ; Kim, Minji ; Park, Jungyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-21ab01420b875baf8ec80d6be9ae8908f3ea828bda7ea522058515209d6789ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alkalinity</topic><topic>Anaerobic digestion</topic><topic>Anaerobic processes</topic><topic>Biogas</topic><topic>Chemical oxygen demand</topic><topic>Efficiency</topic><topic>Food waste</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Stability</topic><topic>Statistical analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheon, Ain</creatorcontrib><creatorcontrib>Sung, Jwakyung</creatorcontrib><creatorcontrib>Jun, Hangbae</creatorcontrib><creatorcontrib>Jang, Heewon</creatorcontrib><creatorcontrib>Kim, Minji</creatorcontrib><creatorcontrib>Park, Jungyu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheon, Ain</au><au>Sung, Jwakyung</au><au>Jun, Hangbae</au><au>Jang, Heewon</au><au>Kim, Minji</au><au>Park, Jungyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Various Machine Learning Models for Process Stability of Bio-Electrochemical Anaerobic Digestion</atitle><jtitle>Processes</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><spage>158</spage><pages>158-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>The application of a machine learning (ML) model to bio-electrochemical anaerobic digestion (BEAD) is a future-oriented approach for improving process stability by predicting performances that have nonlinear relationships with various operational parameters. Five ML models, which included tree-, regression-, and neural network-based algorithms, were applied to predict the methane yield in BEAD reactor. The results showed that various 1-step ahead ML models, which utilized prior data of BEAD performances, could enhance prediction accuracy. In addition, 1-step ahead with retraining algorithm could improve prediction accuracy by 37.3% compared with the conventional multi-step ahead algorithm. The improvement was particularly noteworthy in tree- and regression-based ML models. Moreover, 1-step ahead with retraining algorithm showed high potential of achieving efficient prediction using pH as a single input data, which is plausibly an easier monitoring parameter compared with the other parameters required in bioprocess models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr10010158</doi><orcidid>https://orcid.org/0000-0001-8097-235X</orcidid><orcidid>https://orcid.org/0000-0003-0319-929X</orcidid><orcidid>https://orcid.org/0000-0003-2290-6543</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2022-01, Vol.10 (1), p.158 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2621347708 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Alkalinity Anaerobic digestion Anaerobic processes Biogas Chemical oxygen demand Efficiency Food waste Learning algorithms Machine learning Mathematical models Neural networks Parameters Performance prediction Predictions Regression analysis Stability Statistical analysis Variables |
title | Application of Various Machine Learning Models for Process Stability of Bio-Electrochemical Anaerobic Digestion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Various%20Machine%20Learning%20Models%20for%20Process%20Stability%20of%20Bio-Electrochemical%20Anaerobic%20Digestion&rft.jtitle=Processes&rft.au=Cheon,%20Ain&rft.date=2022-01-01&rft.volume=10&rft.issue=1&rft.spage=158&rft.pages=158-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr10010158&rft_dat=%3Cproquest_cross%3E2621347708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621347708&rft_id=info:pmid/&rfr_iscdi=true |