Paleoenvironmental Conditions during the Paleocene–Eocene Transition Imprinted within the Glauconitic Giral Member of the Barmer Basin, India

The roughly 6 m thick limestone–green shale alternation within the lignite-bearing Giral Member of the Barmer Basin corresponds to a marine flooding event immediately after the Paleocene–Eocene transition. A detailed characterization of the glauconite using Electron Probe Micro Analyzer (EPMA), X-Ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2022-01, Vol.12 (1), p.56
Hauptverfasser: Roy Choudhury, Tathagata, Banerjee, Santanu, Khanolkar, Sonal, Meena, Sher Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 56
container_title Minerals (Basel)
container_volume 12
creator Roy Choudhury, Tathagata
Banerjee, Santanu
Khanolkar, Sonal
Meena, Sher Singh
description The roughly 6 m thick limestone–green shale alternation within the lignite-bearing Giral Member of the Barmer Basin corresponds to a marine flooding event immediately after the Paleocene–Eocene transition. A detailed characterization of the glauconite using Electron Probe Micro Analyzer (EPMA), X-Ray Diffraction (XRD), Mössbauer and Field Emission Gun-Scanning Electron Microscope (FEG-SEM) reveals its origin in the backdrop of prevailing warm climatic conditions. The glauconite pellets vary from fine silt-sized to coarse sand-sized pellets, often reaching ~60% of the rock by volume. Mineralogical investigation reveals a ‘nascent’ to ‘slightly evolved’ character of the marginal marine-originated glauconite showing considerable interstratification. The chemical composition of the glauconite is unusual with a high Al2O3 (>10 wt%) and moderately high Fe2O3(total) contents (>15 wt%). While the K2O content of these glauconites is low, the interlayer sites are atypically rich in Na2O, frequently occupying ~33% of the total interlayer sites. The Mössbauer spectrum indicates 10% of the total iron is in ferrous form. High tetrahedral Al3+ of these glauconites suggests a high-alumina substrate that transformed to glauconite by octahedral Al-for-Fe substitution followed by the addition of K into the interlayer structure. The unusually high Na2O suggests the possibility of a soda-rich pore water formed by the dissolution of alkaline volcanic minerals. The Giral glauconite formation could have been a part of the major contributors in the Fe-sequestration cycle in the Early Eocene shelves. Warm climate during the Early Eocene time favored the glauconitization because of the enhanced supply of Fe, Al, and Si and proliferation of an oxygen-depleted depositional environment.
doi_str_mv 10.3390/min12010056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621332288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621332288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-e7918c37c6e8a995b94ad27c9c55f0412ee53c3aa129a467a61cebd8d07f45933</originalsourceid><addsrcrecordid>eNpNkM9OwzAMxiMEEtPYiReIxBEG-dO0zZFNMCYNwWFI3KosdVmmNhlJC-LGG3DgDXkSQsdhvviz_LMtfwidUnLJuSRXjbGUEUqISA_QgJFMjGnKnw_39DEahbAhMSTluWAD9PWoanBg34x3tgHbqhpPnS1Na5wNuOy8sS-4XQPuQQ0Wfj6_b3qBl17Z0JN43mwj2UKJ3027NrYfmdWq085GQuOZ8XH1PTQr8NhVfX-ifBOriQrGXuB5vKpO0FGl6gCj_zxET7c3y-ndePEwm0-vF2PNZN6OIZM01zzTKeRKSrGSiSpZpqUWoiIJZQCCa64UZVIlaaZSqmFV5iXJqkRIzofobLd3691rB6EtNq7zNp4sWMoo54zleaTOd5T2LgQPVRG_bJT_KCgp_kwv9kznv9iFd7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621332288</pqid></control><display><type>article</type><title>Paleoenvironmental Conditions during the Paleocene–Eocene Transition Imprinted within the Glauconitic Giral Member of the Barmer Basin, India</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Roy Choudhury, Tathagata ; Banerjee, Santanu ; Khanolkar, Sonal ; Meena, Sher Singh</creator><creatorcontrib>Roy Choudhury, Tathagata ; Banerjee, Santanu ; Khanolkar, Sonal ; Meena, Sher Singh</creatorcontrib><description>The roughly 6 m thick limestone–green shale alternation within the lignite-bearing Giral Member of the Barmer Basin corresponds to a marine flooding event immediately after the Paleocene–Eocene transition. A detailed characterization of the glauconite using Electron Probe Micro Analyzer (EPMA), X-Ray Diffraction (XRD), Mössbauer and Field Emission Gun-Scanning Electron Microscope (FEG-SEM) reveals its origin in the backdrop of prevailing warm climatic conditions. The glauconite pellets vary from fine silt-sized to coarse sand-sized pellets, often reaching ~60% of the rock by volume. Mineralogical investigation reveals a ‘nascent’ to ‘slightly evolved’ character of the marginal marine-originated glauconite showing considerable interstratification. The chemical composition of the glauconite is unusual with a high Al2O3 (&gt;10 wt%) and moderately high Fe2O3(total) contents (&gt;15 wt%). While the K2O content of these glauconites is low, the interlayer sites are atypically rich in Na2O, frequently occupying ~33% of the total interlayer sites. The Mössbauer spectrum indicates 10% of the total iron is in ferrous form. High tetrahedral Al3+ of these glauconites suggests a high-alumina substrate that transformed to glauconite by octahedral Al-for-Fe substitution followed by the addition of K into the interlayer structure. The unusually high Na2O suggests the possibility of a soda-rich pore water formed by the dissolution of alkaline volcanic minerals. The Giral glauconite formation could have been a part of the major contributors in the Fe-sequestration cycle in the Early Eocene shelves. Warm climate during the Early Eocene time favored the glauconitization because of the enhanced supply of Fe, Al, and Si and proliferation of an oxygen-depleted depositional environment.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min12010056</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum oxide ; Chemical composition ; Climatic conditions ; Electron probe ; Electron probes ; Emission analysis ; Eocene ; Ferric oxide ; Field emission microscopy ; Flooding ; Glauconite ; Interlayers ; Iron ; Lignite ; Limestone ; Minerals ; Palaeocene ; Paleocene ; Pellets ; Pore water ; Proliferation ; Scanning electron microscopy ; Sedimentary rocks ; Shale ; Silicon ; Stone ; Substrates ; X-ray diffraction</subject><ispartof>Minerals (Basel), 2022-01, Vol.12 (1), p.56</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-e7918c37c6e8a995b94ad27c9c55f0412ee53c3aa129a467a61cebd8d07f45933</citedby><cites>FETCH-LOGICAL-c298t-e7918c37c6e8a995b94ad27c9c55f0412ee53c3aa129a467a61cebd8d07f45933</cites><orcidid>0000-0002-9548-7047 ; 0000-0002-9842-9061 ; 0000-0003-4978-2528 ; 0000-0002-7911-1699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Roy Choudhury, Tathagata</creatorcontrib><creatorcontrib>Banerjee, Santanu</creatorcontrib><creatorcontrib>Khanolkar, Sonal</creatorcontrib><creatorcontrib>Meena, Sher Singh</creatorcontrib><title>Paleoenvironmental Conditions during the Paleocene–Eocene Transition Imprinted within the Glauconitic Giral Member of the Barmer Basin, India</title><title>Minerals (Basel)</title><description>The roughly 6 m thick limestone–green shale alternation within the lignite-bearing Giral Member of the Barmer Basin corresponds to a marine flooding event immediately after the Paleocene–Eocene transition. A detailed characterization of the glauconite using Electron Probe Micro Analyzer (EPMA), X-Ray Diffraction (XRD), Mössbauer and Field Emission Gun-Scanning Electron Microscope (FEG-SEM) reveals its origin in the backdrop of prevailing warm climatic conditions. The glauconite pellets vary from fine silt-sized to coarse sand-sized pellets, often reaching ~60% of the rock by volume. Mineralogical investigation reveals a ‘nascent’ to ‘slightly evolved’ character of the marginal marine-originated glauconite showing considerable interstratification. The chemical composition of the glauconite is unusual with a high Al2O3 (&gt;10 wt%) and moderately high Fe2O3(total) contents (&gt;15 wt%). While the K2O content of these glauconites is low, the interlayer sites are atypically rich in Na2O, frequently occupying ~33% of the total interlayer sites. The Mössbauer spectrum indicates 10% of the total iron is in ferrous form. High tetrahedral Al3+ of these glauconites suggests a high-alumina substrate that transformed to glauconite by octahedral Al-for-Fe substitution followed by the addition of K into the interlayer structure. The unusually high Na2O suggests the possibility of a soda-rich pore water formed by the dissolution of alkaline volcanic minerals. The Giral glauconite formation could have been a part of the major contributors in the Fe-sequestration cycle in the Early Eocene shelves. Warm climate during the Early Eocene time favored the glauconitization because of the enhanced supply of Fe, Al, and Si and proliferation of an oxygen-depleted depositional environment.</description><subject>Aluminum oxide</subject><subject>Chemical composition</subject><subject>Climatic conditions</subject><subject>Electron probe</subject><subject>Electron probes</subject><subject>Emission analysis</subject><subject>Eocene</subject><subject>Ferric oxide</subject><subject>Field emission microscopy</subject><subject>Flooding</subject><subject>Glauconite</subject><subject>Interlayers</subject><subject>Iron</subject><subject>Lignite</subject><subject>Limestone</subject><subject>Minerals</subject><subject>Palaeocene</subject><subject>Paleocene</subject><subject>Pellets</subject><subject>Pore water</subject><subject>Proliferation</subject><subject>Scanning electron microscopy</subject><subject>Sedimentary rocks</subject><subject>Shale</subject><subject>Silicon</subject><subject>Stone</subject><subject>Substrates</subject><subject>X-ray diffraction</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM9OwzAMxiMEEtPYiReIxBEG-dO0zZFNMCYNwWFI3KosdVmmNhlJC-LGG3DgDXkSQsdhvviz_LMtfwidUnLJuSRXjbGUEUqISA_QgJFMjGnKnw_39DEahbAhMSTluWAD9PWoanBg34x3tgHbqhpPnS1Na5wNuOy8sS-4XQPuQQ0Wfj6_b3qBl17Z0JN43mwj2UKJ3027NrYfmdWq085GQuOZ8XH1PTQr8NhVfX-ifBOriQrGXuB5vKpO0FGl6gCj_zxET7c3y-ndePEwm0-vF2PNZN6OIZM01zzTKeRKSrGSiSpZpqUWoiIJZQCCa64UZVIlaaZSqmFV5iXJqkRIzofobLd3691rB6EtNq7zNp4sWMoo54zleaTOd5T2LgQPVRG_bJT_KCgp_kwv9kznv9iFd7c</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Roy Choudhury, Tathagata</creator><creator>Banerjee, Santanu</creator><creator>Khanolkar, Sonal</creator><creator>Meena, Sher Singh</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9548-7047</orcidid><orcidid>https://orcid.org/0000-0002-9842-9061</orcidid><orcidid>https://orcid.org/0000-0003-4978-2528</orcidid><orcidid>https://orcid.org/0000-0002-7911-1699</orcidid></search><sort><creationdate>20220101</creationdate><title>Paleoenvironmental Conditions during the Paleocene–Eocene Transition Imprinted within the Glauconitic Giral Member of the Barmer Basin, India</title><author>Roy Choudhury, Tathagata ; Banerjee, Santanu ; Khanolkar, Sonal ; Meena, Sher Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-e7918c37c6e8a995b94ad27c9c55f0412ee53c3aa129a467a61cebd8d07f45933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Chemical composition</topic><topic>Climatic conditions</topic><topic>Electron probe</topic><topic>Electron probes</topic><topic>Emission analysis</topic><topic>Eocene</topic><topic>Ferric oxide</topic><topic>Field emission microscopy</topic><topic>Flooding</topic><topic>Glauconite</topic><topic>Interlayers</topic><topic>Iron</topic><topic>Lignite</topic><topic>Limestone</topic><topic>Minerals</topic><topic>Palaeocene</topic><topic>Paleocene</topic><topic>Pellets</topic><topic>Pore water</topic><topic>Proliferation</topic><topic>Scanning electron microscopy</topic><topic>Sedimentary rocks</topic><topic>Shale</topic><topic>Silicon</topic><topic>Stone</topic><topic>Substrates</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy Choudhury, Tathagata</creatorcontrib><creatorcontrib>Banerjee, Santanu</creatorcontrib><creatorcontrib>Khanolkar, Sonal</creatorcontrib><creatorcontrib>Meena, Sher Singh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy Choudhury, Tathagata</au><au>Banerjee, Santanu</au><au>Khanolkar, Sonal</au><au>Meena, Sher Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paleoenvironmental Conditions during the Paleocene–Eocene Transition Imprinted within the Glauconitic Giral Member of the Barmer Basin, India</atitle><jtitle>Minerals (Basel)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>56</spage><pages>56-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>The roughly 6 m thick limestone–green shale alternation within the lignite-bearing Giral Member of the Barmer Basin corresponds to a marine flooding event immediately after the Paleocene–Eocene transition. A detailed characterization of the glauconite using Electron Probe Micro Analyzer (EPMA), X-Ray Diffraction (XRD), Mössbauer and Field Emission Gun-Scanning Electron Microscope (FEG-SEM) reveals its origin in the backdrop of prevailing warm climatic conditions. The glauconite pellets vary from fine silt-sized to coarse sand-sized pellets, often reaching ~60% of the rock by volume. Mineralogical investigation reveals a ‘nascent’ to ‘slightly evolved’ character of the marginal marine-originated glauconite showing considerable interstratification. The chemical composition of the glauconite is unusual with a high Al2O3 (&gt;10 wt%) and moderately high Fe2O3(total) contents (&gt;15 wt%). While the K2O content of these glauconites is low, the interlayer sites are atypically rich in Na2O, frequently occupying ~33% of the total interlayer sites. The Mössbauer spectrum indicates 10% of the total iron is in ferrous form. High tetrahedral Al3+ of these glauconites suggests a high-alumina substrate that transformed to glauconite by octahedral Al-for-Fe substitution followed by the addition of K into the interlayer structure. The unusually high Na2O suggests the possibility of a soda-rich pore water formed by the dissolution of alkaline volcanic minerals. The Giral glauconite formation could have been a part of the major contributors in the Fe-sequestration cycle in the Early Eocene shelves. Warm climate during the Early Eocene time favored the glauconitization because of the enhanced supply of Fe, Al, and Si and proliferation of an oxygen-depleted depositional environment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min12010056</doi><orcidid>https://orcid.org/0000-0002-9548-7047</orcidid><orcidid>https://orcid.org/0000-0002-9842-9061</orcidid><orcidid>https://orcid.org/0000-0003-4978-2528</orcidid><orcidid>https://orcid.org/0000-0002-7911-1699</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2022-01, Vol.12 (1), p.56
issn 2075-163X
2075-163X
language eng
recordid cdi_proquest_journals_2621332288
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Aluminum oxide
Chemical composition
Climatic conditions
Electron probe
Electron probes
Emission analysis
Eocene
Ferric oxide
Field emission microscopy
Flooding
Glauconite
Interlayers
Iron
Lignite
Limestone
Minerals
Palaeocene
Paleocene
Pellets
Pore water
Proliferation
Scanning electron microscopy
Sedimentary rocks
Shale
Silicon
Stone
Substrates
X-ray diffraction
title Paleoenvironmental Conditions during the Paleocene–Eocene Transition Imprinted within the Glauconitic Giral Member of the Barmer Basin, India
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paleoenvironmental%20Conditions%20during%20the%20Paleocene%E2%80%93Eocene%20Transition%20Imprinted%20within%20the%20Glauconitic%20Giral%20Member%20of%20the%20Barmer%20Basin,%20India&rft.jtitle=Minerals%20(Basel)&rft.au=Roy%20Choudhury,%20Tathagata&rft.date=2022-01-01&rft.volume=12&rft.issue=1&rft.spage=56&rft.pages=56-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min12010056&rft_dat=%3Cproquest_cross%3E2621332288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621332288&rft_id=info:pmid/&rfr_iscdi=true